Browse > Article
http://dx.doi.org/10.4218/etrij.2019-0265

Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication  

Manimekalai, Thirunavukkarasu (Department of ECE, College of Engineering Guindy, Anna University)
Joan, Sparjan Romera (Department of ECE, College of Engineering Guindy, Anna University)
Laxmikandan, Thangavelu (Department of ECE, College of Engineering Guindy, Anna University)
Publication Information
ETRI Journal / v.42, no.6, 2020 , pp. 846-858 More about this Journal
Abstract
The non-orthogonal multiple access (NOMA) technique offers throughput improvement to meet the demands of the future generation of wireless communication networks. The objective of this work is to further improve the throughput by including an underlay cognitive radio network with an existing multi-carrier NOMA network, using cooperative communication. The throughput is maximized by optimal resource allocation, namely, power allocation, subcarrier assignment, relay selection, user pairing, and subcarrier pairing. Optimal power allocation to the primary and secondary users is accomplished in a way that target rate constraints of the primary users are not affected. The throughput maximization is a combinatorial optimization problem, and the computational complexity increases as the number of users and/or subcarriers in the network increases. To this end, to reduce the computational complexity, a dynamic network resource allocation algorithm is proposed for combinatorial optimization. The simulation results show that the proposed network improves the throughput.
Keywords
CDRT; cooperative relaying; Multi-carrier NOMA; throughput; underlay CRN;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Boyd. Lecture on class ee364b of Stanford University, 2017, Available from: http://www.stanford.edu/class/ee364b/lectures.html [last accessed September 2019].
2 A. Benjebbour et al., System-level performance of downlink NOMA for future LTE enhancements, in Proc. IEEE Globecom Workshops (Atlanta, GA, USA), 2013, pp. 66-70.
3 Z. Yang et al., The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT, IEEE Trans. Wireless Commun. 16 (2017), no. 7, 4332-4343.   DOI
4 Y. Yuan et al., Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems, IEEE Trans. Commun. 65 (2019), no. 6, 2641-2656.   DOI
5 P. Parida and S. S. Das. Power allocation in OFDM based NOMA systems: A DC programming approach, in Proc. IEEE Globecom Workshops (Austin, TX, USA), 2014, pp. 1026-1031.
6 Y. Saito et al., Non-orthogonal multiple access (NOMA) for cellular future radio access, in Proc. IEEE 77th Veh. Technol. Conf. (Dresden, Germany), 2013, pp. 1-5.
7 D. Tse and P. Viswanath, Fundamentals of Wireless Communications (1st ed), Cambridge University Press, Cambridge, UK, 2004.
8 A. Zafar et al. On multiple users scheduling using superposition coding over rayleigh fading channels, IEEE Commun. Lett. 17 (2013), no. 4, 733-736.   DOI
9 A. Benjebbour et al., Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access, in Proc. Int. Symp. Intell. Signal Process. Commun. Syst. (Okinawa, Japan), 2013, pp. 770-774.
10 H. Nikopour and H. Baligh, Sparse code multiple access, in Proc. IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (London, UK), 2013, pp. 332-336.
11 S. Chen et al., Pattern division multiple access-a novel non-orthogonal multiple access for fifth-generation radio networks, IEEE Trans. Veh. Technol. 66 (2017), no. 4, 3185-3196.   DOI
12 M. Al-Imari et al. Performance evaluation of low density spreading multiple access, in Proc. 8th Int, Wireless Commun. Mobile Comput. Conf. (Limassol, Cyprus), 2012, pp. 383-388.
13 Q. Li et al., Index modulated OFDM spread spectrum, IEEE Trans. Wireless Commun. 17 (2018), no. 4, 2360-2374.   DOI
14 D. Fang et al., Lattice partition multiple access: a new method of downlink non-orthogonal multiuser transmissions, in Proc. IEEE Global Commun. Conf. (Washington, DC, USA), 2016, pp. 1-6.
15 L. Dai et al., Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends, IEEE Commun. Mag. 53 (2015), no. 9, 74-81.   DOI
16 Z. Ding et al., A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends, IEEE J. Sel. Areas Commun. 35 (2017), no. 10, 2181-2195.   DOI
17 Y. Sun et al. Optimal joint power and subcarrier allocation for MC-NOMA systems, in Proc. IEEE Global Commun. Conf. Washington, DC, USA, 2016, pp. 1-6.
18 W. Cai et al., Subcarrier and power allocation scheme for downlink OFDM-NOMA systems, IET Signal Proc. 11 (2017), no. 1, 51-58.   DOI
19 T. A. Ayman and H. Arslan, NOMA for multinumerology OFDM systems, Wireless Commun. Mobile Comput. 2018 (2018), 1-9.
20 Y. Saito et al., System-level performance evaluation of downlink non-orthogonal multiple access (NOMA), in Proc. IEEE Annu. Int. Symp. Personal, Indoor, Mobile Radio Commun. (London, UK), 2013, pp. 1-6.
21 Y. Sun et al., Optimal joint power and subcarrier allocation for full duplex MC-NOMA systems, IEEE Trans. Commun. 65 (2017), no. 3, 1077-1091.   DOI
22 D. T. Thai and M. Berbineau. Coordinated Direct and Relay Schemes for Two-Hop Communication in VANETS, 2014, Available from: https://arxiv.org/abs/1403.0173 [last accessed September 2019].
23 Z. Ding, M. Peng, and H. V. Poor, Cooperative non-orthogonal multiple access in 5G systems, IEEE Commun. Lett. 18 (2015), no. 8, 1462-1465.
24 L. Lv et al., Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over nakagami-m fading channels, IEEE Trans. Veh. Technol. 66 (2017), no. 6, 5506-5511.   DOI
25 D. T. Thai and P. Popovski, Coordinated direct and relay transmission with interference cancelation in wireless systems, IEEE Commun. Lett. 15 (2011), no. 4, 416-418.   DOI
26 T. Zeng et al., Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G, IEEE Access 6 (2018), 48268-48288.   DOI
27 J. B. Kim et al., System-level performance evaluation for non-orthogonal multiple access in coordinated direct and relay transmission, in Proc. Int. Conf. Inf. Commun. Technol. Converg. (Jeju Island, Korea), 2017, pp. 1296-1298.
28 N. T. Do et al., A BNBF user selection scheme for NOMA-based cooperative relaying systems with swipt, IEEE Commun. Lett. 21 (2017), no. 3, 664-667.   DOI
29 M. F. Kader and S. Y. Shin, Coordinated direct and relay transmission using uplink NOMA, IEEE Wireless Commun. Lett. 7 (2018), no. 3, 400-403.   DOI
30 L. Zheng et al., On the performance of NOMA based coordinated direct and relay transmission using dynamic scheme, IET Commun. 12 (2018), no. 18, 2231-2242.   DOI
31 K. A. Shah and I. Koo, A novel physical layer security scheme in OFDM-based cognitive radio networks, IEEE Access 6 (2018), 29486-29498.   DOI
32 Y. Liu et al., Nonorthogonal multiple access in large-scale underlay cognitive radio networks, IEEE Trans. Veh. Technol. 65 (2016), no. 12, 152-157.
33 H. Khun, The Hungarian method for the assignment problems, Naval Res. Logistics Quarterly 62 (1995), no. 1-2, 83-97.
34 S. Haykin, Cognitive radio: brain-empowered wireless communications, IEEE J. Sel. Areas Commun. 23 (2015), no. 2, 202-220.
35 S. Zhang et al., Novel spectrum sensing and access in cognitive radio networks, Sci. China Inf. Sci. 61 (2018), no. 8, 089302.   DOI
36 J. B. Kim and I. H. Lee, Non-orthogonal multiple access in coordinated direct and relay transmission, IEEE Commun. Lett. 19 (2015), no. 11, 2037-2040.   DOI
37 N. Zabetian et al., Rate optimization in NOMA cognitive radio networks, in Proc. Int. Symp. Telecommun. (Tehran, Iran), 2016, pp. 62-65.
38 S. Arzykulov et al., Outage performance of underlay CR-NOMA networks with detect-and-forward relaying, in Proc. IEEE Global Commun. Conf. (Abu Dhabi, UAE), 2018, pp. 1-6.
39 G. Im and J. H. Lee, Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks, IEEE Commun. Lett. 23 (2019), no. 4, 692-695.   DOI
40 Y. Li, Z. Chen, and Y. Gong, Optimal power allocation for coordinated transmission in cognitive radio networks, in Proc. IEEE Veh. Technol. Conf. (Glasgow, UK), 2015, pp. 1-5.
41 M. F. Kader. A power-domain NOMA inspired overlay spectrum sharing scheme, 2018, Available from: https://engrxiv.org/vy3na/ [last accessed September 2019].
42 C. Li and X. Li. Throughput maximization for multi-carrier non-orthogonal multiple access systems with coordinated direct and relay transmission, in Proc. IEEE Int. Conf. Commun. (Kansas City, MO, USA), 2018, pp. 1-6.
43 M. F. Kader and S. Y. Shin. Cooperative spectrum sharing with space time bock Ccoding and non-orthogonal multiple access, in Proc. Int. Conf. Ubiquitous Future Netw. (Vienna, Austria), 2016, pp. 490-494.
44 W. Xu et al., Joint sensing duration adaptation, user matching, and power allocation for cognitive OFDM-NOMA systems, IEEE Trans. Wireless Commun. 17 (2018), no. 2, 1269-1282.   DOI
45 Y. Sun, D. W. K. Ng, and R. Schober. Resource allocation for MCNOMA systems with cognitive relaying, in Proc. IEEE Globecom Workshops (Singapore), 2017, pp. 1-7.
46 M. Pischella and J. C. Belfiore, Weighted sum throughput maximization in multicell OFDMA networks, IEEE Trans. Veh. Technol. 59 (2010), no. 2, 896-905.   DOI
47 G. De Angelis, G. Baruffa, and S. Cacopardi, Gnss/cellular hybrid positioning system for mobile users in urban scenarios, IEEE Trans. Intell. Transp. Syst. 14 (2013), no. 1, 313-321.   DOI
48 K. Kyamakya and K. Jobmann, Location management in cellular networks: classification of the most important paradigms, realistic simulation framework, and relative performance analysis, IEEE Trans. Veh. Technol. 54 (2005), no. 2, 687-708.   DOI
49 S. Boyd, Convex optimization (7th ed.), Cambridge University Press, Cambridge, UK, 2009.