• Title/Summary/Keyword: cognate

Search Result 106, Processing Time 0.024 seconds

Quantitative Assay for the Binding of Jun-Fos Dimer and Activator Protein-1 Site

  • Lee, Sang-Kyou;Park, Se-Yeon;Jun, Gyo;Hahm, Eun-Ryeong;Lee, Dug-Keun;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.594-598
    • /
    • 1999
  • The Jun and Fos families of eukaryotic transcription factors form heterodimers capable of binding to their cognate DNA enhancer elements. We are interested in searching for inhibitors or antagonists of the binding of the Jun-Fos heterodimer to the activator protein-1 (AP-1) site. The basic-region leucine zipper (bZIP) domain of c-Fos was expressed as a fusion protein with glutathione S-transferase, and allowed to form a heterodimer with the bZIP domain of c-Jun. The heterodimer was bound to glutathione-agarose, to which were added radiolabeled AP-1 nucleotides. After thorough washing, the gel-bound radioactivity was counted. The assay is faster than the coventional electrophoretic mobility shift assay because the gel electrophoresis step and the autoradiography step are eliminated. Moreover, the assay is very sensitive, allowing the detection of picomolar quantities of nucleotides, and is not affected by up to 50% dimethylsulfoxide, a solvent for hydrophobic inhibitors. Curcumin and dihydroguaiaretic acid, recently known inhibitors of Jun-Fos-DNA complex formation, were applied to this Jun-GST-fused Fos system and revealed to decrease the dimer-DNA binding.

  • PDF

Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes

  • Lee, Charles C.;Kibblewhite, Rena E.;Paavola, Chad D.;Orts, William J.;Wagschal, Kurt
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.77-83
    • /
    • 2017
  • Lignocellulosic biomass represents a potentially large resource to supply the world's fuel and chemical feedstocks. Enzymatic bioconversion of this substrate offers a reliable strategy for accessing this material under mild reaction conditions. Owing to the complex nature of lignocellulose, many different enzymatic activities are required to function in concert to perform efficient transformation. In nature, large multienzyme complexes are known to effectively hydrolyze lignocellulose into constituent monomeric sugars. We created artificial complexes of enzymes, called rosettazymes, in order to hydrolyze glucuronoxylan, a common lignocellulose component, into its cognate sugar ${\small{D}}$-xylose and then further convert the ${\small{D}}$-xylose into ${\small{D}}$-xylonic acid, a Department of Energy top-30 platform chemical. Four different types of enzymes (endoxylanase, ${\alpha}$-glucuronidase, ${\beta}$-xylosidase, and xylose dehydrogenase) were incorporated into the artificial complexes. We demonstrated that tethering our enzymes in a complex resulted in significantly more activity (up to 71%) than the same amount of enzymes free in solution. We also determined that varying the enzyme composition affected the level of complex-related activity enhancement as well as overall yield.

Supramolecular assembly of peptide molecules for applications in biological multivalent interactions

  • Lim, Yong-Beom;Park, So-Mi;Lee, Eun-Ji;Jeong, Hae-Mi;Ryu, Ja-Hyoung;Yang, Won-Young;Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.265-265
    • /
    • 2006
  • Multivalent interactions, which are characterized by the simultaneous binding of multiple ligands on multiple receptors, are prevalent in biological system. We have shown that it is able to make a supramolecular aggregate coated with multiple functional molecules fairly easily by simply mixing one building block. In this particular example, a mannose-coated object was able to agglutinate bacterial cells with cognate binding partners through multivalent interactions. This kind of strategy can be applied in developing materials that can selectively remove pathogens. Supramolecular assembly of this type should be very useful in exploring multivalent biological interactions.

  • PDF

Endothelial Cells Isolated from the Bovine Corpus Luteum Synthesize Prostaglandin $F_{2{\alpha}}$ Receptor

  • Gwon, Sun-Yeong;Rhee, Ki-Jong;Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.261-265
    • /
    • 2013
  • The corpus luteum is a transient endocrine gland essential for regulation of the ovarian cycle as well as for establishing and maintaining pregnancy. Prostaglandin $F_{2{\alpha}}$ (PGF) initiates functional and structural regression of the corpus luteum and therefore is an important regulator of the estrous cycle. It is a matter of debate whether the endothelial cells of the bovine corpus luteum express PGFR, the cognate receptor for PGF. Therefore, the aim of this study was to assess the expression of PGFR in bovine endothelial cells. Endothelial cells were isolated from the bovine corpus luteum of the mid-luteal stage using magnetic beads and cultured in vitro. We demonstrate that this isolation procedure generates a pure culture of endothelial cells as confirmed by synthesis of Factor VIII and lack of expression of $3{\beta}$-hydroxysteroid dehydrogenase. By RT-PCR, Western blot and immunofluorescence analyses, we further show that the cultured endothelial cells produced PGFR. This model system can be utilized to provide an experimental system to investigate the role of PGF on endothelial cells during the reproductive cycle.

Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor

  • Bandhu, Amitava;Ganguly, Tridib;Chanda, Palas K.;Das, Malabika;Jana, Biswanath;Chakrabarti, Gopal;Sau, Subrata
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.293-298
    • /
    • 2009
  • Temperate mycobacteriophage L1 encodes an unusual repressor (CI) for regulating its lytic-lysogenic switching and, in contrast to the repressors of most temperate phages, it binds to multiple asymmetric operator DNAs. Here, ions like $Na^+$, $Cl^-$, and $acetate^-$ ions were demonstrated to facilitate the optimal binding of CI to cognate operator DNA, whereas $K^+$, $Li^+$, ${NH_4}^+$, $Mg^{2+}$, $carbonate^{2-}$, and $citrate^{3-}$ ions significantly affected its operator binding activity. Of these ions, $Mg^{2+}$ unfolded CI most severely at room temperature and, compared to $Mg^{2+}$, $Na^+$ provided improved thermal stability to CI. Furthermore, the intrinsic tryptophan fluorescence of CI was changed notably upon replacing $Na^+$ with $Mg^{2+}$ and these opposing effects of $Mg^{2+}$ and $Na^+$ were also noticed in their actions on the C-terminal fragment (CTD) of CI. Taken together, $Na^+$ appeared to be more appropriate than $Mg^{2+}$ for maintaining the biologically active conformation of CI needed for its optimal binding to operator DNA.

Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling

  • Krishnan, Jayalakshmi;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.153-166
    • /
    • 2012
  • A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-${\beta}$, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.

Salicylic Acid and Wounding Induce Defense-Related Proteins in Chinese Cabbage

  • Kim, Hong-Nam;Cha, Jae-Soon;Cho, Tae-Ju;Kim, Hak-Yong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.213-219
    • /
    • 2003
  • The response of plants to pathogens and wounding is dependent upon very sensitive perception mechanisms. Although genetic approaches have revealed a variety of resistance genes that activate common defense responses, defense-related proteins are not well characterized in plants. Therefore, we used a proteomic approach to determine which defense-related proteins are induced by salicylic acid (SA) and wounding in Chinese cabbage. We found that SA and wounding induce pathogenesis-related protein 1a (PR1a) at both protein and mRNA levels using proteomics and Northern blot analysis, respectively. This indicates that our proteomic approach is useful for identifying defense-related proteins. We also identified several other proteins that are induced by SA or wounding. Among the seven SA-induced proteins identified, four may be defense-related, including defense-related protein, phospholipase D (PLD), resistance protein RPS2 homolog, and L-ascorbate peroxidase. Out of the six wounding-induced proteins identified, three may be defense-related: heat shock cognate protein 70 (HSC70), polygalacturonase, and peroxidase P7. The precise functions of these proteins in plant defense responses await further study. However, identification of the defense-related proteins described in this study should allow us to better understand the mechanisms and signal transduction pathways involved in defense responses in Chinese cabbage.

An Efficient Secretion of Type I Secretion Pathway-Dependent Lipase, TliA, in Escherichia coli: Effect of Relative Expression Levels and Timing of Passenger Protein and ABC Transporter

  • Eom Gyeong-Tae;Rhee Joon-Shick;Song Jae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1422-1428
    • /
    • 2006
  • An ABC transporter apparatus of the Gram-negative bacterial type I secretion pathway can be used as a secretory protein expression system in Escherichia coli. Four types of coexpression systems for the Pseudomonas fluorescens lipase gene, tliA, and its cognate ABC transporter gene cluster, tliDEF, were constructed. When the relative expression levels were changed by adding different concentrations of IPTG, the secretion (16.9 U/ml of culture) of TliA in E. coli [pTliDEFA-223+pACYC184] was significantly higher than E. coli [pKK223-3+pTliDEFA-184] secreting the lowest level of TliA (5.2 U/ml of culture). Maximal accumulation of the lipase secreted occurred in the mid-exponential phase, implying that the efficient protein secretion via an ABC transporter was restricted only to actively growing cells. Finally, the secretion level of TliA in E. coli [pTliDEFA-223+pACYC184] was increased to 26.4 U/ml by inducing gene expression at the culture initiation time. These results indicate that a significant increase in the ABC transporter-dependent protein secretion can be achieved by simply controlling the relative expression levels between the ABC transporter and its passenger protein, even in the recombinant E. coli cells.

Perspectives on the therapeutic potential of short-chain fatty acid receptors

  • Kim, Sunhong;Kim, Jeong-Hoon;Park, Bi Oh;Kwak, Young Shin
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.173-178
    • /
    • 2014
  • There is rapidly growing interest in the human microbiome because of its implication in metabolic disorders and inflammatory diseases. Consequently, understanding the biology of short chain fatty acids and their receptors has become very important for identifying novel therapeutic avenues. GPR41 and GPR43 have been recognized as the cognate receptors for SCFAs and their roles in metabolism and inflammation have drawn much attention in recent years. GPR43 is highly expressed on immune cells and has been suggested to play a role in inflammatory diseases such as inflammatory bowel disease. Both GPR41 and GPR43 have been implicated in diabetes and obesity via the regulation of adipose tissue and gastrointestinal hormones. So far, many studies have provided contradictory results, and therefore further research is required to validate these receptors as drug targets. We will also discuss the synthetic modulators of GPR41 and GPR43 that are critical to understanding the functions of these receptors.

The Effects of Sex Hormones on the Expression of ODF/OPG in Human Gingival Fibroblast and Periodontal Ligament Cell at Serum Concentration During Pregnancy

  • Shin, Ji-Yearn;Baek, Dong-Heon;Han, Soo-Boo
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.105-110
    • /
    • 2005
  • Periodontitis is a chronic infectious disease that leads to the destruction, one of the major cause of tooth loss in human. Osteoclast Differentiation Factor(ODF), also called as Receptor activator of NF-${\kappa}B$ ligand(RANKL), a surface-associated ligand on bone marrow stromal cells and osteoblasts, activates its cognate receptor RANK on osteoclast progenitor cells, which leads to differentiation of these mononucleated precursor cells. Osteoprotegerin(OPG), a decoy receptor, is released from stromal cells and osteoblasts to inhibit the interaction between RANKL and RANK. The experiment for the effect of pregnancy on gingival health showed greater gingival inflammation and edema during pregnancy, despite similar plaque index. There should be many factors affecting the periodontal health in pregnancy. In this experiment, we examined the direct effects of sex hormones(estrogen and progesterone) on the ODF/OPG expression in human gingival fibroblasts and periodontal ligament cells at the serum concentration of pregnancy. The ratio was high in the 1st trimester of pregnancy by estrogen and in the late 2nd trimester by progesterone. Therefore, the local periodontal destruction might be accelerated by these hormonal effect on the periodontal cells.