Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.3.272

Perspectives on the therapeutic potential of short-chain fatty acid receptors  

Kim, Sunhong (Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Jeong-Hoon (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Bi Oh (Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kwak, Young Shin (College of Pharmacy, Korea University)
Publication Information
BMB Reports / v.47, no.3, 2014 , pp. 173-178 More about this Journal
Abstract
There is rapidly growing interest in the human microbiome because of its implication in metabolic disorders and inflammatory diseases. Consequently, understanding the biology of short chain fatty acids and their receptors has become very important for identifying novel therapeutic avenues. GPR41 and GPR43 have been recognized as the cognate receptors for SCFAs and their roles in metabolism and inflammation have drawn much attention in recent years. GPR43 is highly expressed on immune cells and has been suggested to play a role in inflammatory diseases such as inflammatory bowel disease. Both GPR41 and GPR43 have been implicated in diabetes and obesity via the regulation of adipose tissue and gastrointestinal hormones. So far, many studies have provided contradictory results, and therefore further research is required to validate these receptors as drug targets. We will also discuss the synthetic modulators of GPR41 and GPR43 that are critical to understanding the functions of these receptors.
Keywords
GPR41; GPR43; Inflammation; Obesity; SCFA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272.   DOI   ScienceOn
2 Lagerstrom, M. C. and Schioth, H. B. (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339-357.   DOI   ScienceOn
3 Kolakowski, L. F., Jr. (1994) GCRDb: a G-protein-coupled receptor database. Receptors Channels 2, 1-7.
4 Bockaert, J. and Pin, J. P. (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729.   DOI   ScienceOn
5 Overington, J. P., Al-Lazikani, B. and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Discov. 5, 993-996.   DOI   ScienceOn
6 Bergman, E. N. (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567-590.   DOI
7 Mortensen, P. B. and Clausen, M. R. (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. Suppl. 216, 132-148.
8 den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J. and Bakker, B. M. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325-2340.   DOI   ScienceOn
9 Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319.   DOI   ScienceOn
10 Le Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., Parmentier, M. andDetheux, M. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481-25489.   DOI   ScienceOn
11 Hudson, B. D., Tikhonova, I. G., Pandey, S. K., Ulven, T. and Milligan, G. (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J. Biol. Chem. 287, 41195-41209.   DOI
12 Sawzdargo, M., George, S. R., Nguyen, T., Xu, S., Kolakowski, L. F. and O'Dowd, B. F. (1997) A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem. Biophys. Res. Commun. 239, 543-547.   DOI   ScienceOn
13 Nilsson, N. E., Kotarsky, K., Owman, C. and Olde, B. (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047-1052.   DOI   ScienceOn
14 Nakajima, T., Iikura, M., Okayama, Y., Matsumoto, K., Uchiyama, C., Shirakawa, T., Yang, X., Adra, C. N., Hirai, K. and Saito, H. (2004) Identification of granulocyte subtype-selective receptors and ion channels by using a high-density oligonucleotide probe array. J. Allergy Clin. Immunol. 113, 528-535.   DOI   ScienceOn
15 Lee, S. U., In, H. J., Kwon, M. S., Park, B. O., Jo, M., Kim, M. O., Cho, S., Lee, S., Lee, H. J., Kwak, Y. S. and Kim, S. (2013) beta-Arrestin 2 Mediates G Protein-Coupled Receptor 43 Signals to Nuclear Factor-kappaB. Biol. Pharm. Bull. 36, 1754-1759.   DOI   ScienceOn
16 Hong, Y. H.,Nishimura, Y., Hishikawa, D., Tsuzuki, H., Miyahara, H., Gotoh, C., Choi, K. C., Feng, D. D., Chen, C., Lee, H. G., Katoh, K., Roh, S. G. and Sasaki, S. (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092-5099.   DOI   ScienceOn
17 Nohr, M. K., Pedersen, M. H., Gille, A., Egerod, K. L., Engelstoft, M. S., Husted, A. S., Sichlau, R. M., Grunddal, K. V., Poulsen, S. S., Han, S., Jones, R. M., Offermanns, S. and Schwartz, T. W. (2013) GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552-3564.   DOI   ScienceOn
18 Zaibi, M. S., Stocker, C. J., O'Dowd, J., Davies, A., Bellahcene, M., Cawthorne, M. A., Brown, A. J., Smith, D. M. and Arch, J. R. (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584, 2381-2386.   DOI   ScienceOn
19 Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H. and Tsujimoto, G. (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829.   DOI   ScienceOn
20 Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A. and Tsujimoto, G. (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. U. S. A. 108, 8030-8035.   DOI   ScienceOn
21 Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., Hammer, R. E., Williams, S. C., Crowley, J., Yanagisawa, M. and Gordon, J. I. (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. U. S. A. 105, 16767-16772.   DOI   ScienceOn
22 Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. and Kim, C. H. (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 396-406 e391-310.   DOI   ScienceOn
23 Inoue, D., Kimura, I., Wakabayashi, M.,Tsumoto, H., Ozawa, K., Hara, T., Takei, Y., Hirasawa, A., Ishihama, Y. and Tsujimoto, G. (2012) Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Lett. 586, 1547-1554.   DOI   ScienceOn
24 Karaki, S., Mitsui, R., Hayashi, H., Kato, I., Sugiya, H., Iwanaga, T., Furness, J. B. and Kuwahara, A. (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324, 353-360.   DOI   ScienceOn
25 Vinolo, M. A., Ferguson, G. J., Kulkarni, S., Damoulakis, G., Anderson, K., Bohlooly, Y. M., Stephens, L., Hawkins, P. T. and Curi, R. (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6, e21205.   DOI   ScienceOn
26 Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M. and Mackay, C. R. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286.   DOI   ScienceOn
27 Sina, C., Gavrilova, O., Forster, M., Till, A., Derer, S., Hildebrand, F., Raabe, B., Chalaris, A., Scheller, J., Rehmann, A., Franke, A., Ott, S., Hasler, R., Nikolaus, S., Folsch, U. R., Rose-John, S., Jiang, H. P., Li, J., Schreiber, S. and Rosenstiel, P. (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514-7522.   DOI   ScienceOn
28 Reaven, G. M., Hollenbeck, C., Jeng, C. Y., Wu, M. S. and Chen, Y. D. (1988) Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020-1024.   DOI
29 Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., Glickman, J. N. and Garrett, W. S. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569-573.   DOI   ScienceOn
30 Haber, E. P., Ximenes, H. M., Procopio, J., Carvalho, C. R., Curi, R. and Carpinelli, A. R. (2003) Pleiotropic effects of fatty acids on pancreatic beta-cells. J. Cell Physiol. 194, 1-12.   DOI   ScienceOn
31 Ge, H., Li, X., Weiszmann, J., Wang, P., Baribault, H., Chen, J. L., Tian, H. and Li, Y. (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519-4526.   DOI   ScienceOn
32 Karra, E. and Batterham, R. L. (2010) The role of gut hormones in the regulation of body weight and energy homeostasis. Mol. Cell. Endocrinol. 316, 120-128.   DOI   ScienceOn
33 EUROSCREEN (2010) COMPOUNDS, PHARMACEUTICAL COMPOSITION AND METHODS FOR USE IN TREATING METABOLIC DISORDERS. WIPO WO 2010/066682 A1.
34 Hudson, B. D., Due-Hansen, M. E., Christiansen, E., Hansen, A. M., Mackenzie, A. E., Murdoch, H., Pandey, S. K., Ward, R. J., Marquez, R., Tikhonova, I. G., Ulven, T. and Milligan, G. (2013) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J. Biol. Chem. 288, 17296-17312.   DOI   ScienceOn
35 Swaminath, G., Jaeckel, P., Guo, Q., Cardozo, M., Weiszmann, J., Lindberg, R., Wang, Y., Schwandner, R. and Li, Y. (2011) Mutational analysis of G-protein coupled receptor--FFA2. Biochem. Biophys. Res. Commun. 405, 122-127.   DOI   ScienceOn
36 Bjursell, M., Admyre, T., Goransson, M., Marley, A. E., Smith, D. M., Oscarsson, J. and Bohlooly, Y. M. (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211-220.   DOI   ScienceOn
37 Tolhurst, G., Heffron, H., Lam,Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F. and Gribble, F. M. (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364-371.   DOI   ScienceOn
38 Wang, Y., Jiao, X., Kayser, F., Liu, J., Wang, Z., Wanska, M., Greenberg, J., Weiszmann, J., Ge, H., Tian, H., Wong, S., Schwandner, R., Lee, T. and Li, Y. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493-498.   DOI   ScienceOn
39 Bernard, J., Hartiel, A. F., Brantis, C., Hoveyda, H. and Fraser, G. (2009) Identification of a small-molecule GPR43 agonist that Increases glucose uptake and inhibits lipolysis in adipocytes. American Diabetes Association Annual Meeting, New Orleans, LA, USA 69, Abs1362p.
40 Wang, Y., Jiao, X., Kayser, F., Liu, J., Wang, Z., Wanska, M., Greenberg, J., Weiszmann, J., Ge, H., Tian, H., Wong, S., Schwandner, R., Lee, T. and Li, Y. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493-498.   DOI   ScienceOn
41 Leonard, J. N., Chu, Z. L., Bruce, M. A. and Boatman, P. D. (2006) GPR41 and modulators thereof for the treatment of insulin-related disorders. WIPO WO2006/052566 A2.
42 EUROSCREEN (2011) PYRROLIDINE OR THIAZOLIDINE CARBOXYLIC ACID DERIVATIVES, PHARMACEUTICAL COMPOSITION AND METHODS FOR USE IN TREATING METABOLIC DISORDERS AS AGONISTS OF G-PROTEIN COUPLED RECEPTOR 43 (GPR43). WIPO WO2011/073376A1.
43 EUROSCREEN (2011) NOVEL COMPOUNDS, METHOD FOR USE THEM AND PHARMACEUTICAL COMPOSITION CONTAINING THEM. WIPO WO 2011/151436 A2.
44 Saniere, L. R. M., Pizzonero, M. R., Triballeu, N., Vandeghinste, N. E. R., De Vos, S. I. J., Brys, R. C. X. and Pourbaix-Lebraly, C. D. (2012) AZETIDINE DERIVATIVES USEFUL FOR THE TREATMENT OF METABOLIC AND INFLAMMATORY DISEASES. WIPO WO 2012/098033A1.
45 Senga, T., Iwamoto, S., Yoshida, T., Yokota, T., Adachi, K., Azuma, E., Hamaguchi, M. and Iwamoto, T. (2003) LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 101, 1185-1187.   DOI   ScienceOn
46 Lin, H. V., Frassetto, A., Kowalik, E. J., Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G. and Marsh, D. J. (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7, e35240.   DOI
47 Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization ofallosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609.   DOI   ScienceOn
48 Karaki, S., Tazoe, H., Hayashi, H., Kashiwabara, H., Tooyama, K., Suzuki, Y. and Kuwahara, A. (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135-142.   DOI   ScienceOn
49 Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609.   DOI   ScienceOn
50 Xiong, Y., Miyamoto, N., Shibata, K., Valasek, M. A., Motoike, T., Kedzierski, R. M. and Yanagisawa, M. (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. U. S. A. 101, 1045-1050.   DOI   ScienceOn