Browse > Article
http://dx.doi.org/10.4014/jmb.1606.06041

Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes  

Lee, Charles C. (USDA-ARS-WRRC, Bioproducts Research Unit)
Kibblewhite, Rena E. (USDA-ARS-WRRC, Bioproducts Research Unit)
Paavola, Chad D. (NASA Ames Research Center)
Orts, William J. (USDA-ARS-WRRC, Bioproducts Research Unit)
Wagschal, Kurt (USDA-ARS-WRRC, Bioproducts Research Unit)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.1, 2017 , pp. 77-83 More about this Journal
Abstract
Lignocellulosic biomass represents a potentially large resource to supply the world's fuel and chemical feedstocks. Enzymatic bioconversion of this substrate offers a reliable strategy for accessing this material under mild reaction conditions. Owing to the complex nature of lignocellulose, many different enzymatic activities are required to function in concert to perform efficient transformation. In nature, large multienzyme complexes are known to effectively hydrolyze lignocellulose into constituent monomeric sugars. We created artificial complexes of enzymes, called rosettazymes, in order to hydrolyze glucuronoxylan, a common lignocellulose component, into its cognate sugar ${\small{D}}$-xylose and then further convert the ${\small{D}}$-xylose into ${\small{D}}$-xylonic acid, a Department of Energy top-30 platform chemical. Four different types of enzymes (endoxylanase, ${\alpha}$-glucuronidase, ${\beta}$-xylosidase, and xylose dehydrogenase) were incorporated into the artificial complexes. We demonstrated that tethering our enzymes in a complex resulted in significantly more activity (up to 71%) than the same amount of enzymes free in solution. We also determined that varying the enzyme composition affected the level of complex-related activity enhancement as well as overall yield.
Keywords
Lignocellulose; multienzyme assembly; bioconversion; glucuronoxylan; xylonic acid;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Selfsurface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. USA 109: 13260-13265.   DOI
2 Stern J, Morais S, Lamed R, Bayer EA. 2016. Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. MBio 7: e00083-e00016.
3 Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M. 2016. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8: 299-309.   DOI
4 Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD. 2009. The rosettazyme: a synthetic cellulosome. J. Biotechnol. 143: 139-144.   DOI
5 Kagawa HK, Yaoi T, Brocchieri L, McMillan RA, Alton T, Trent JD. 2003. The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon. Mol. Microbiol. 48: 143-156.   DOI
6 McMillan RA, Howard J, Zaluzec NJ, Kagawa HK, Mogul R, Li YF, et al. 2005. A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J. Am. Chem. Soc. 127: 2800-2801.   DOI
7 McMillan RA, Paavola CD, Howard J, Chan SL, Zaluzec NJ, Trent JD. 2002. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat. Mater. 1: 247-252.   DOI
8 Ren N, Wang A, Cao G, Xu J, Gao L. 2009. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol. Adv. 27: 1051-1060.   DOI
9 Kircher M. 2015. Sustainability of biofuels and renewable chemicals production from biomass. Curr. Opin. Chem. Biol. 29: 26-31.   DOI
10 Tyner WE. 2013. Biofuels and food prices: separating wheat from chaff. Glob. Food Sec. 2: 126-130.   DOI
11 Balan V. 2014. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014: 463074.
12 McCann MC, Carpita NC. 2015. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J. Exp. Bot. 66: 4109-4118.   DOI
13 Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS. 2015. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol. 29: 49-57.   DOI
14 Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. 2016. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 16: 1-16.   DOI
15 Zheng HC, Sun MZ, Meng LC, Pei HS, Zhang XQ, Yan Z, et al. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its appli cation in xylooligosaccharides production. J. Microbiol. Biotechnol. 24: 489-496.   DOI
16 Numan MT, Bhosle NB. 2006. ${\alpha}$-L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260.   DOI
17 Poutanen K, Tenkanen M, Korte H, Puls J. 1991. Accessory enzymes involved in the hydrolysis of xylans, pp. 426-436. In Leatham GF, Himmel ME (eds.). Enzymes in Biomass Conversion. American Chemical Society, Washington, DC.
18 Dutta S, Wu KCW. 2014. Enzymatic breakdown of biomass: Enzyme active sites, immobilization, and biofuel production. Green Chem. 16: 4615-4626.   DOI
19 Lee SH, Lee YE. 2014. Cloning and characterization of a multidomain GH10 xylanase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 1525-1535.   DOI
20 Lee SH, Lee YE. 2014. Cloning, expression, and characterization of a thermostable GH51 alpha-L-arabinofuranosidase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 236-244.   DOI
21 Li F, Xie J, Zhang X, Zhao L. 2015. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis. J. Microbiol. Biotechnol. 25: 11-17.   DOI
22 Werpy T, Peterson G. 2004. Top Value Added Chemicals From Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge TN, US Department of Energy. Available at http://www.nrel.gov/docs/fy04osti/35523.pdf.
23 Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DW. 2005. Enzyme-coupled assay for ${\beta}$-xylosidase hydrolysis of natural substrates. Appl. Environ. Microbiol. 71: 5318-5323.   DOI
24 Rennie EA, Scheller HV. 2014. Xylan biosynthesis. Curr. Opin. Biotechnol. 26: 100-107.   DOI
25 Chun BW, Dair B, Macuch PJ, Wiebe D, Porteneuve C, Jeknavorian A. 2006. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Appl. Biochem. Biotechnol. 131: 645-658.   DOI
26 Paavola CD, Chan SL, Li Y, Mazzarella KM, McMillan RA, Trent JD. 2006. A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 17: 1171-1176.   DOI
27 Mishra S, Beguin P, Aubert JP. 1991. Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J. Bacteriol. 173: 80-85.   DOI
28 Studier FW. 2005. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41: 207-234.   DOI
29 Lee CC, Kibblewhite-Accinelli RE, Smith MR, Wagschal K, Orts WJ, Wong DW. 2008. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Curr. Microbiol. 57: 301-305.   DOI
30 Milner Y, Avigad G. 1967. A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydr. Res. 4: 359-361.   DOI
31 Sun L, Yang F, Sun H, Zhu T, Li X, Li Y, et al. 2016. Synthetic pathway optimization for improved 1,2,4-butanetriol production. J. Ind. Microbiol. Biotechnol. 43: 67-78.   DOI
32 Wagschal K, Jordan DB, Lee CC, Younger A, Braker JD, Chan VJ. 2015. Biochemical characterization of uronate dehydrogenases from three pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans. Enzyme Microb. Technol. 69: 62-68.   DOI
33 Lee CC, Smith M, Kibblewhite-Accinelli RE, Williams TG, Wagschal K, Robertson GH, Wong DW. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116.   DOI
34 Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CM, Ferreira LM, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605.   DOI
35 Zamora F, Bueno M, Molina I, Iribarren JI, Munoz-Guerra S, Galbis JA. 2000. Stereoregular copolyamides derived from D-xylose and L-arabinose. Macromolecules 33: 2030-2038.   DOI
36 Niu W, Molefe MN, Frost JW. 2003. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J. Am. Chem. Soc. 125: 12998-12999.   DOI
37 Bayer EA, Belaich J-P, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521-554.   DOI
38 Fontes CM, Gilbert HJ. 2010. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79: 655-681.   DOI
39 Raman B, Pan C, Hurst GB, Rodri guez M J r, McKeown CK, Lankford PK, et al. 2009. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4: e5271.   DOI
40 Borne R, Bayer EA, Pages S, Perret S, Fierobe HP. 2013. Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity. FEBS J. 280: 5764-5779.   DOI
41 McClendon SD, Mao Z, Shin HD, Wagschal K, Chen RR. 2012. Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Appl. Biochem. Biotechnol. 167: 395-411.   DOI
42 Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, et al. 2012. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 3: e00508-e00512.
43 Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung WJ. 2012. High yield producti on of D-xylonic acid from Dxylose using engineered Escherichia coli. Bioresour. Technol. 115: 244-248.   DOI
44 Lee CC, Kibblewhite RE, Wagschal K, Li R, Orts WJ. 2012. Isolation of ${\alpha}$-glucuronidase enzyme from a rumen metagenomic library. Protein J. 31: 206-211.   DOI
45 Jordan DB. 2008. ${\beta}$-D-Xylosidase from Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates. Appl. Biochem. Biotechnol. 146: 137-149.   DOI
46 Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U. 2007. Genetic analysis of a novel pathway for Dxylose metabolism in Caulobacter crescentus. J. Bacteriol. 189: 2181-2185.   DOI
47 Toivari M, Nygard Y, Kumpula EP, Vehkomaki ML, Bencina M, Valkonen M, et al. 2012. Metabolic engineering of Saccharomyces cerevisiae for bioconversi on of D-xylose to D-xylonate. Metab. Eng. 14: 427-436.   DOI
48 Ou J, Cao Y. 2014. Incorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33. J. Microbiol. Biotechnol. 24: 1178-1188.   DOI
49 Liang Y, Si T, Ang EL, Zhao H. 2014. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 80: 6677-6684.   DOI