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There is rapidly growing interest in the human microbiome
because of its implication in metabolic disorders and inflamma-
tory diseases. Consequently, understanding the biology of short
chain fatty acids and their receptors has become very important
for identifying novel therapeutic avenues. GPR41 and GPR43
have been recognized as the cognate receptors for SCFAs and
their roles in metabolism and inflammation have drawn much
attention in recent years. GPR43 is highly expressed on immune
cells and has been suggested to play a role in inflammatory
diseases such as inflammatory bowel disease. Both GPR41 and
GPR43 have been implicated in diabetes and obesity via the
regulation of adipose tissue and gastrointestinal hormones. So
far, many studies have provided contradictory results, and
therefore further research is required to validate these receptors
as drug targets. We will also discuss the synthetic modulators of
GPR41 and GPR43 that are critical to understanding the
functions of these receptors. [BMB Reports 2014; 47(3): 173-178]

INTRODUCTION

G-protein-coupled receptors (GPCRs) comprise a large family
of seven-transmembrane receptors that convey various ex-
tracellular stimuli such as light, odorants, cytokines and hor-
mones to a cascade of intracellular signaling. There are ~800
predicted human GPCRs of which over 300 are non-olfactory
receptors that are involved in various physiological processes
(1, 2) and can be categorized into six subfamilies (Class A-F)
based on their conserved residues and ligands (3, 4). The im-
portance of GPCRs is emphasized by the fact that 27% of
FDA-approved drugs target GPCRs (5), although only a minor
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portion of these non-olfactory receptors are exploited as ther-
apeutic targets. GPCRs activate heterotrimeric G proteins,
where the oo and By subunits are responsible for signaling, and
independent from the G protein signaling they also recruit
[-arrestins to be desensitized and transduce a signal.

Fatty acids are categorized by the number of their carbons.
Short chain fatty acids (SCFAs) refer to carboxylic acids with
aliphatic tails of less than 6 carbons such as formic, acetic,
propionic, butyric, isobutyric, valeric, isovaleric, and 2-methyl-
butyric acids (6). SCFAs are typically synthesized in vivo,
whereas longer chain fatty acids are often derived from food
sources. Among them, acetate, propionate, and butyrate con-
sist of over 90% of the SCFAs in the colon and are largely pro-
duced by multiple anaerobic bacteria in the human gut (7).
SCFAs have been regarded as an energy source for gut epi-
thelium and peripheral tissues, as well as a regulator of metab-
olism and inflammation (8). A decade ago, it was found that
two GPCRs, GPR41 (FFAR3/FFA3) and GPR43 (FFAR2/FFA2),
can sense these fatty acids (9-11). These receptors are ex-
pressed not only in the gut endocrine cells in the vicinity of
SCFA production, but also at multiple other sites such as adi-
pose tissue, pancreatic islets, and immune cells (9-13).
Because of the relatively recent deorphanization of GPR41
and GPR43, more and more studies have been emerging that
unveil the roles of these receptors, and their SCFA ligands, in
human physiology. This review will focus on the biological
functions of GPR41 and GPR43 as relevant to drug targeting
and outline the current status of drug discovery with these
receptors.

BIOLOGY OF SCFA RECEPTORS

GPR41 and GPR43 were first identified, along with GPR40, as
constituents of a novel GPCR gene cluster spanning about
100kb in human chromosome 19q13.1 (14). They were later
found to be activated by SCFAs, which showed a distinct struc-
ture-activity relationship toward these two receptors. The order
of potency for GPR43 was propionate = acetate > butyrate >
valerate = formate, while for GPR41 it was propionate = bu-
tyrate = valerate > acetate = formate (9-11). However, these
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ranked orders of potency were later found to be not conserved
in other species (15). Although both receptors respond to the
same group of ligands, GPR41 and GPR43 are coupled to a
different set of downstream signaling cascades. GPR41 se-
lectively couples with Gai, which inhibits adenylyl cyclase, so
that its activation by SCFAs decreases the intracellular concen-
tration of cyclic AMP (cAMP) (9, 10). Acetate and propionate
activate GPR43 and in turn, induce both Goi and Goyg, which
decreases cAMP and increases cytoplasmic calcium ions
(9-11). In addition, our group recently showed that Nuclear
Factor kB (NFkB) can be regulated by the GPR43-B-arrestin 2
pathway (16), whereas, as far as we know, there is no report
that has linked GPR41 to B-arrestins.

GPR41 was initially found to be broadly expressed in vari-
ous tissues, including the pancreas, spleen and adipose tissue.
Subsequently, it was found that SCFAs stimulate the pro-
duction of the hormone leptin in mouse white adipose tissue
cells via GPR41 (17). However, several groups were unable to
detect GPR41 in mouse adipose tissue or in a differentiated
adipocyte cell line, but instead found GPR43 to be highly ex-
pressed in those cells (18-21). In addition, GPR41 is present in
a variety of enteroendocrine cells and enteric neurons with
varying degrees of expression level and is implicated in the re-
lease of gastrointestinal hormones (22, 23). Like the con-
troversy over its expression in adipose tissue, one group re-
ported that GPR41-knockout (KO) mice had significantly less
fat than wild-type mice (23), while another group later showed
no significant difference between the fat content of wild type
and GPR41 KO mice (24). In addition, Zaibi and co-workers
disclosed their unpublished results, which found that male
GPR41 KO mice were obese rather than lean, supporting their
prediction that GPR41 knockout mice would have reduced
leptin levels because of decreased expression of GPR43 in adi-
pose tissue and subsequently, reduced stimulation of leptin se-
cretion by plasma SCFA (19). These discrepancies may arise
from the different genetic backgrounds or rearing conditions in
the various experiments, which would affect the gut microbiota.
Finally, a pair of recent papers revealed an intriguing physio-
logical function of GPR41. In the fed state, SCFAs and ketones
modulate the sympathetic nervous system directly through the
GPR41-GBy-PLCB-ERK axis to contribute to sympathetic activa-
tion (21, 25). Taken together, GPR41 agonists might have a
beneficial effect on the treatment of obesity and other metabol-
ic diseases. To clarify the in vivo functions of GPR41, careful
examination of KO mice and highly specific small molecule
modulators would be needed.

GPR43 is expressed in the adipose tissue, intestine, and es-
pecially immune cells such as peripheral blood mononuclear
cells (PBMC), eosinophils, and neutrophils (9-11, 22, 26-28).
For the last decade, it has been quite well established that
SCFAs induce neutrophil chemotaxis via GPR43 in p38 and
Akt-dependent manners (10, 28-30). Intriguingly, more recent
studies showed contradictory results that GPR43 KO mice had
either exacerbated or reduced inflammation in a colitis model
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(28, 29, 31, 32). Although a link between GPR43 and in-
flammatory bowel disease (IBD) (and possibly other in-
flammatory diseases) seems to be firm, it remains to be re-
solved whether an agonist or antagonist of GPR43 would be
the correct treatment for this disease.

The plasma levels of free fatty acids are usually increased in
metabolic diseases such as obesity and type Il diabetes, result-
ing in insulin resistance and lipid deposition (33, 34). The
downregulation of lipolysis in the adipose tissue could there-
fore be a plausible pharmacological strategy for improving in-
sulin sensitivity. The data showing that GPR43 is expressed in
adipose tissue and differentiated adipocytes raised the possi-
bility of the involvement of GPR43 in lipid metabolism.
Indeed, SCFAs enhanced adipogenesis and inhibited lipolysis,
whereas knockdown or knockout of GPR43 abolished these ef-
fects (18, 35). In agreement with these results, a synthetic
GPR43 agonist attenuated lipolysis (36-38). As was the case for
GPR41, studies of GPR43 KO vyielded conflicting phenotypes.
When mice deficient for GPR43 were fed a high fat diet, the
mice displayed lower body fat mass, improved glucose con-
trol, lower levels of plasma lipids, and decreased inflammation
in white adipose tissue compared to the wild type, probably
due to the elevated body temperature and subsequently in-
creased energy expenditure of the GPR43 deficient mice (39).
However, Tsujimoto and co-workers demonstrated that GPR43
KO mice were obese on a normal diet, whereas mice over-
expressing GPR43 in adipose tissue were lean even when fed
a high-fat diet (20). In that paper, they hypothesized that this
discrepancy may result from the differences in the genetic
backgrounds of the mice used in the different studies. It is the
latter study that is more likely, given that GPR43 and SCFAs
promote the release of peptide YY and glucagon-like pep-
tide-1, which is an anorexic hormone and incretin hormone,
respectively (26, 27, 40, 41). Taken together, these data strong-
ly indicate that GPR43 agonists have potential as therapeutics
for the treatment of type Il diabetes and obesity.

COMPOUNDS TARGETING SCFA RECEPTORS:
AGONISTS OR ANTAGONISTS?

As shown in Table 1, early discovery efforts produced a series
of allosteric agonists by Amgen (36, 42, 43) and orthosteric ag-
onists generated by Euroscreen SA (44). The series of allosteric
compounds from Amgen were completely selective for GPR43
over GPR41 (S. Kim, unpublished result). These compounds
alone produced a full agonistic response as compared to
SCFAs and showed similar potency toward human GPR43 and
mouse GPR43, and acted in a positively cooperative fashion
with SCFAs (36, 42, 43). In addition, these phenylacetamide
compounds have been shown to inhibit lipolysis in differ-
entiated adipocytes and lower free fatty acid levels in mice se-
rum (45, 46), which is consistent with the previous data from
siRNA treated and KO mice. Euroscreen SA developed many
synthetic orthosteric ligands with better potency that displayed

http://ombreports.org



Table 1. Selective agonists and antagonists of GPR41 and GPR43
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Compounds Target Organization ECso (NM) Class Stage
7 O\\}/OH
D GPR43 Euroscreen 270 Orthosteric Agonist Discovery

F X

! cl
GPR43 Amgen 710 Allosteric Agonist Unknown
GPR43 Euroscreen 21 Orthosteric Agonist Discovery
GPR43 Euroscreen 100 Antagonist Discovery
GPR43 University of Glasgow 138 Orthosteric Agonist Discovery
GPR43 Galapogos <100 Antagonist Phase |
GPR41 Arena Not known Agonist Discovery
GPR41 Arena Not known Antagonist Discovery

similar effects such as increased glucose uptake, decreased lip-
olysis, increased GLP-1 level, improved oral glucose tolerance
test, and reduced TNFa production (37, 47, 48). An antagonist
developed by Galapagos for the treatment of psoriasis was an-
nounced as an orally available small molecule that reduced
migration of neutrophils in rodent studies (49). Presently, this
is the only compound in clinical phase among the different
modulators of GPR43. In contrast to GPR43, the development
of GPR41 modulators has been less transparent. A GPR41-se-
lective agonist and antagonist were developed by Arena phar-
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maceuticals (50). However, the patent did not disclose the po-
tency of either of these compounds.

CONCLUDING REMARKS

Although there is a variety of evidence indicating that GPR41
and GPR43 are involved in disease-relevant physiological
processes such as lipolysis, adipogenesis, hormone secretion,
and inflammation, it remains to be elucidated whether these
receptors are valuable drug targets. It is also currently under
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debate which direction of modulation - agonism vs. antago-
nism - would vyield therapeutic benefits. The question of
whether GPR41 and GPR43 are druggable targets is a difficult
one. Answers to this would be best provided by more research
on the biology of GPR41 and GPR43and the selective potent
compounds targeting these receptors.
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