• Title/Summary/Keyword: coexisting networks

Search Result 14, Processing Time 0.028 seconds

Power Control with Nearest Neighbor Nodes Distribution for Coexisting Wireless Body Area Network Based on Stochastic Geometry

  • Liu, Ruixia;Wang, Yinglong;Shu, Minglei;Zhao, Huiqi;Chen, Changfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5218-5233
    • /
    • 2018
  • The coexisting wireless body area networks (WBAN) is a very challenging issue because of strong inter-networks interference, which seriously affects energy consumption and spectrum utilization ratio. In this paper, we study a power control strategy with nearest neighbor nodes distribution for coexisting WBAN based on stochastic geometry. Using homogeneous Poisson point processes (PPP) model, the relationship between the transmission power and the networks distribution is analytically derived to reduce interference to other devices. The goal of this paper is to increase the transmission success probability and throughput through power control strategy. In addition, we evaluate the area spectral efficiency simultaneously active WBAN in the same channel. Finally, extensive simulations are conducted to evaluate the power control algorithm.

Interference Management with Block Diagonalization for Macro/Femto Coexisting Networks

  • Jang, Uk;Cho, Kee-Seong;Ryu, Won;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.297-307
    • /
    • 2012
  • A femtocell is a small cellular base station, typically designed for use in a home or small business. The random deployment of a femtocell has a critical effect on the performance of a macrocell network due to co-channel interference. Utilizing the advantage of a multiple-input multiple-output system, each femto base station (FBS) is able to form a cluster and generates a precoding matrix, which is a modified version of conventional single-cell block diagonalization, in a cooperative manner. Since interference from clustered-FBSs located at the nearby macro user equipment (MUE) is the dominant interference contributor to the coexisting networks, each cluster generates a precoding matrix considering the effects of interference on nearby MUEs. Through simulation, we verify that the proposed algorithm shows better performance respective to both MUE and femto user equipment, in terms of capacity.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.

Optimal Control Approach for a Smart Grid

  • Imen Amdouni;Naziha Labiadh;Lilia El amraoui
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.194-198
    • /
    • 2023
  • The current electricity networks will undergo profound changes in the years to come to be able to meet the growing demand for electricity, while minimizing the costs of consumers and producers, etc. The electricity network of tomorrow or even the intelligent « Smart Grids » network will be the convergence of two networks: the electricity network and the telecommunications network. In this context falls our work which aims to study the impact of the integration of energy decentralization into the electricity network. In this sense, we have implemented a new smart grid model where several coexisting suppliers can exchange information with consumers in real time. In addition, a new approach to energy distribution optimization has been developed. The simulation results prove the effectiveness of this approach in improving energy exchange and minimizing consumer purchase costs and line losses.

Sensor Location Estimation in of Landscape Plants Cultivating System (LPCS) Based on Wireless Sensor Networks with IoT

  • Kang, Tae-Sun;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.226-231
    • /
    • 2020
  • In order to maximize the production of landscape plants in optimal condition while coexisting with the environment in terms of precision agriculture, quick and accurate information gathering of the internal environmental elements of the growing container is necessary. This may depend on the accuracy of the positioning of numerous sensors connected to landscape plants cultivating system (LPCS) in containers. Thus, this paper presents a method for estimating the location of the sensors related to cultivation environment connected to LPCS by measuring the received signal strength (RSS) or time of arrival TOA received between oneself and adjacent sensors. The Small sensors connected to the LPCS of container are known for their locations, but the remaining locations must be estimated. For this in the paper, Rao-Cramer limits and maximum likelihood estimators are derived from Gaussian models and lognormal models for TOA and RSS measurements, respectively. As a result, this study suggests that both RSS and TOA range measurements can produce estimates of the exact locations of the cultivation environment sensors within the wireless sensor network related to the LPCS.

Integration of Wireless Body Area Networks (WBANs) and WAN, WiMAX and LTE

  • Hu, Long;Dung, Ong Mau;Liu, Qiang;Han, Tao;Sun, Yantao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.980-997
    • /
    • 2013
  • Nowadays, wireless communication has a great advantage in technology. We use wireless devices almost in all expected life such as: entertainment, working and recently in the healthcare area, where Wireless Body Area Networks (WBANs) become a hot topic for researchers and system designers. Recent work on WBANs focus on related issues to communication protocol, especially ZigBee network is fine tuned to meet particular requirements in healthcare area. For example, some papers present real-time patient monitoring via ZigBee communication given the short distance between body sensors and remote devices, while the other work solve the limited coverage problem of Zigbee by designing mechanisms to relay Zigbee data to other types of wire or wireless infrastructure. However, very few of them investigate the scenarios of ZigBee coexisting or integrated with other networks. In this paper, we present the real-time data transmission from ZigBee end devices to Wide Area Network (WAN), Worldwide interoperation for microwave access network (WiMAX) and Long Term Evolution network (LTE). We provide in detail the ZigBee gateway components. Our simulation is conducted by OPNET, we visualize many topology network scenarios in ZigBee hybrid system. The results in simulation show that ZigBee end devices can successfully transmit data in real-time to other network end devices.

A Cross-Layer Based Per-Application Mobility Management Platform (Cross-layer 기반 응용 별 이동성 관리를 위한 플랫폼)

  • Chang, Moon-Jeong;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • An inevitable trend in the next generation wireless network environments is coexistence of different wireless access networks in a complementary, manner. In addition, mobile devices equipped with multiple air interfaces simultaneously executing diverse applications have been emerging, In such network environment, It is required that a solution for mobile users to seamlessly roam between different access networks as well as to satisfy QoS requirements of each application by efficiently utilizing coexisting various wireless access networks. In this paper, therefore, we propose a mobility management platform based on per-application end-to-end mobility management and cross-layer handover controls. Four core functional modules composing the proposed platform for end user devices are defined: Monitoring Agents, Profile Database, Decision Engine, and IP Agent. We show through simulations that the presented platform provides an improved QoS as it selectively utilizes the best available networks.

Suppression of IEEE 802.11a Interference in TH-UWB Systems Using Singular Value Decomposition in Wireless Multipath Channels

  • Xu, Shaoyi;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 2008
  • Narrow-band interference (NBI) from the coexisting narrow-band services affects the performance of ultra wideband (UWB) systems considerably due to the high power of these narrow-band signals with respect to the UWB signals. Specifically, IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals may interfere with UWB systems significantly. In this paper, we suggest a novel NBI suppression technique based on singular value decomposition (SVD) algorithm in time hopping UWB (TH-UWB) systems. SVD is used to approximate the interference which then is subtracted from the received signals. The algorithm precision and closed-form bit error rate (BER) expression are derived in the wireless multipath channel. Comparing with the conventional suppression methods such as a notch filter and a RAKE receiver, the proposed method is simple and robust and especially suitable for UWB systems.

The Asymptotic Throughput and Connectivity of Cognitive Radio Networks with Directional Transmission

  • Wei, Zhiqing;Feng, Zhiyong;Zhang, Qixun;Li, Wei;Gulliver, T. Aaron
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.227-237
    • /
    • 2014
  • Throughput scaling laws for two coexisting ad hoc networks with m primary users (PUs) and n secondary users (SUs) randomly distributed in an unit area have been widely studied. Early work showed that the secondary network performs as well as stand-alone networks, namely, the per-node throughput of the secondary networks is ${\Theta}(1/\sqrt{n{\log}n})$. In this paper, we show that by exploiting directional spectrum opportunities in secondary network, the throughput of secondary network can be improved. If the beamwidth of secondary transmitter (TX)'s main lobe is ${\delta}=o(1/{\log}n)$, SUs can achieve a per-node throughput of ${\Theta}(1/\sqrt{n{\log}n})$ for directional transmission and omni reception (DTOR), which is ${\Theta}({\log}n)$ times higher than the throughput with-out directional transmission. On the contrary, if ${\delta}={\omega}(1/{\log}n)$, the throughput gain of SUs is $2{\pi}/{\delta}$ for DTOR compared with the throughput without directional antennas. Similarly, we have derived the throughput for other cases of directional transmission. The connectivity is another critical metric to evaluate the performance of random ad hoc networks. The relation between the number of SUs n and the number of PUs m is assumed to be $n=m^{\beta}$. We show that with the HDP-VDP routing scheme, which is widely employed in the analysis of throughput scaling laws of ad hoc networks, the connectivity of a single SU can be guaranteed when ${\beta}$ > 1, and the connectivity of a single secondary path can be guaranteed when ${\beta}$ > 2. While circumventing routing can improve the connectivity of cognitive radio ad hoc network, we verify that the connectivity of a single SU as well as a single secondary path can be guaranteed when ${\beta}$ > 1. Thus, to achieve the connectivity of secondary networks, the density of SUs should be (asymptotically) bigger than that of PUs.

A Next-generation Mobility Management Scheme for an IPv4/IPv6 Dual-stack Terminal (듀얼스택 단말을 지원하는 차세대 이동성 지원 기술 연구)

  • Lee, Kyoung-Hee;Lee, Sung-Kuen;Lee, Hyun-Woo;Han, Youn-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1182-1191
    • /
    • 2011
  • In this paper, we propose a network-based IP mobility management scheme, called Access Independent Mobile Service with IPv4/IPv6 Dual Stack (AIMS-DS), which can provide high-quality multimedia services to IPv4/IPv6 dual-stack mobile nodes (MNs) without any interruption over various wireless/wired access networks. The proposed scheme provides an MN with a fast and reliable mobility service among heterogeneous wireless access networks through the network-based control, the complete separation method of control and data plane, the cross-layer (layer2 and layer3) interworking method for handover control acceleration, etc, In addition, the proposed AIMS-DS can provide seamless mobility service to an MN under the environments of IPv4/IPv6 coexisting networks through the home address mobility support and transport network support. Through performance evaluation with computer simulations, we have shown the superiority of the proposed AIMS-DS in terms of handover latency, packet 1085 and packet delivery latency.