
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 2, APRIL, 2014 227

The Asymptotic Throughput and Connectivity of
Cognitive Radio Networks with Directional Transmission

Zhiqing Wei, Zhiyong Feng, Qixun Zhang, Wei Li, and T. Aaron Gulliver

Abstract: Throughput scaling laws for two coexisting ad hoc net-
works with m primary users (PUs) andn secondary users (SUs)
randomly distributed in an unit area have been widely studied.
Early work showed that the secondary network performs as well
as stand-alone networks, namely, the per-node throughput of the
secondary networks isΘ(1/

√
n logn). In this paper, we show

that by exploiting directional spectrum opportunities in secondary
network, the throughput of secondary network can be improved.
If the beamwidth of secondary transmitter (TX)’s main lobe is
δ = o(1/logn), SUs can achieve a per-node throughput of
Θ(1/

√
n logn) for directional transmission and omni reception

(DTOR), which isΘ(logn) times higher than the throughput with-
out directional transmission. On the contrary, if δ = ω(1/logn),
the throughput gain of SUs is2π/δ for DTOR compared with the
throughput without directional antennas. Similarly, we have de-
rived the throughput for other cases of directional transmission.

The connectivity is another critical metric to evaluate theperfor-
mance of random ad hoc networks. The relation between the num-
ber of SUsn and the number of PUsm is assumed to ben = mβ .
We show that with the HDP-VDP routing scheme, which is widely
employed in the analysis of throughput scaling laws of ad hocnet-
works, the connectivity of a single SU can be guaranteed when
β > 1, and the connectivity of a single secondary path can be guar-
anteed whenβ > 2. While circumventing routing can improve the
connectivity of cognitive radio ad hoc network, we verify that the
connectivity of a single SU as well as a single secondary pathcan
be guaranteed whenβ > 1. Thus, to achieve the connectivity of
secondary networks, the density of SUs should be (asymptotically)
bigger than that of PUs.

Index Terms: Cognitive radio networks, connectivity, directional
transmission, spectrum holes, throughput scaling laws.

I. INTRODUCTION

Cognitive radio (CR) [1] is one of the most promising tech-
nologies for efficient spectrum utilization. It enables flexible
and comprehensive use of the available spectrum [2], and al-
lows for optimization of radio resource utilization by exploiting
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Fig. 1. SUs exploiting directional spectrum opportunities.

spectrum holes. The spectrum holes are the available spectrum
for secondary users (SUs), and can exist in several dimensions
such as frequency, time, geographical space, code, and angle
[3]. The available spectrum holes (or spectrum opportunities)
can be used to improve SU spectrum access and throughput. In
this paper, we evaluate the performance of cognitive radio net-
works (CRNs) that exploiting directional spectrum opportuni-
ties in the view of throughput and connectivity. Throughputis
the efficiency of a network while connectivity is the reliability
of a network. Throughput together with connectivity can reveal
more complete features of cognitive radio networks. Therefore,
we study the throughput and connectivity.

The throughput of large scale wireless networks has been
widely explored since the seminal work of Gupta and Kumar
[4]. For n ad hoc nodes randomly distributed in an unit area,
they showed that the per-node throughput isΘ(1/

√
n logn). A

recent study of throughput scaling laws for cognitive radioad
hoc networks (CRAHNs) produced similar results. In [5], Jeon
et al. showed that in a heterogeneous environment withn SUs
andm primary users (PUs) coexisting, the secondary network
can achieve per-node throughput ofΘ(1/

√
n logn). In [6], Yin

et al. achieved the same results with a more practical assump-
tion that SUs only know the (geographic) location of the PU
transmitters (TX). This result was verified by Huanget al. [7]
for a general model.

In the existing literature on CRAHN throughput scaling laws,
only spectrum holes in space and time domains are exploited.
The throughput scaling laws for CRAHNs that exploit direc-
tional spectrum holes have not yet been investigated. Yiet al. [8]
and Li et al. [9] showed that a traditional ad hoc network with
directional transmission can achieve a better per-node through-
put higher thanΘ(1/

√
n logn). In [10], Zhaoet al. showed

that by exploiting directional spectrum holes, both the proba-
bility of successful communication and the spectrum efficiency
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of the cognitive radio network are improved. Zhanget al. in
[11] have analyzed the capacity of wireless mesh networks with
omni and directional antennas. They showed that there is a ca-
pacity gain for wireless mesh networks when using directional
antennas. Further, Daiet al. in [12] have investigated the ca-
pacity of multi-channel wireless networks using directional an-
tennas. They have shown that deploying directional antennas to
multi-channel networks can greatly improve the network capac-
ity due to increased network connectivity and reduced interfer-
ence. Wanget al. in [13] investigated spectrum holes in four
dimensions, i.e., time, frequency, location and direction. All of
these results show that directional transmission in secondary
networks can increase the spectrum opportunities of SUs and
improve the performance of secondary network. In this paper,
we analyze the throughput gain of SUs with directional trans-
mission. Consider the example illustrated in Fig. 1. The PU
preservation regions (shown as circles), cover the entire area.
Thus, according to the network protocols in [5] and [6], the SUs
have no transmission opportunities. However, if the SUs trans-
mit directionally, the interference to PUs can be mitigatedand
the throughput of secondary network is improved.

In this paper, we verify that if the beamwidth of secondary
TX’s main lobe isδ = o(1/logn), SUs can achieve a per-
node throughput ofΘ(1/

√
n logn) for directional transmission

and omni reception (DTOR), which isΘ(logn) times higher
than the throughput without directional transmission. Simi-
larly, if the beamwidth of secondary receiver (RX)’s main lobe
is φ = o(1/logn), SUs can achieve a per-node throughput
of Θ(1/

√
n logn) for omni transmission and directional re-

ception (OTDR). If δφ = ω(1/logn), SUs can achieve a
per-node throughput ofΘ(1/

√
n logn) for directional trans-

mission and directional reception (DTDR). On the contrary,if
δ = ω(1/logn), the throughput gain of SUs is2π/δ for DTOR
compared with the throughput without directional transmission.
If δφ = ω(1/logn), the throughput gain of SUs is2π/φ for
OTDR. If δφ = ω(1/logn), throughput gain of SUs is4π2/δφ
for DTDR.

The connectivity is another critical metric to evaluate theper-
formance of random ad hoc networks. The asymptotic connec-
tivity of large-scale wireless networks has been widely explored
since the seminal work of Gupta and Kumar [14]. Assumingn
ad-hoc nodes are randomly distributed in a disc of unit area,they
showed that if each node transmits at a power level so as to cover
an area ofπr2 = (logn+ c(n))/n, then the resulting network
can achieve 1-connectivity if and only ifc(n) → ∞ [4], i.e.,
there exists a path between any pair of nodes with high probabil-
ity (w.h.p.). Zhanget al. in [15] considered thek-connectivity,
i.e., at leastk disjoint paths exist between any pair of nodes.
Due to the interaction between PUs and SUs, the connectivity
of a CRAHN differs from that of traditional homogeneous ad
hoc networks. In cognitive radio network, the channels are dy-
namic because of the spatial and temporal dynamics of the pri-
mary traffic [16]. Renet al. in [16] determined the delay and
connectivity scaling behavior in ad hoc cognitive radio networks
using the theories of continuum percolation and ergodicity. Ao
et al. in [17] investigated the connectivity of cooperative cogni-
tive radio network from a percolation-based perspective. In [18],
Abbagnaleet al. proposed a Laplacian matrix based method to

Table 1. Key acronyms and parameters.

Symbol Description
PU Primary user.
SU Secondary user.
HDP Horizontal data path.
VDP Vertical data path.
TX, RX Transmitter and receiver.
m The number of PUs.
n The number of SUs.
as The area of a secondary cell.
∆, δ The beamwidth of SU’s TX beam.
Φ, φ The beamwidth of SU’s RX beam.
Rp, Rs Data rate of PU and SU.
λp(m), λs(n) Per-node throughput of PUs and SUs.

measure the connectivity of CRAHNs.
However, most of the existing literature on CRAHN connec-

tivity does not consider the routing scheme in the connectiv-
ity analysis. Investigating connectivity without considering the
routing is not practical, since the routing schemes in most net-
works are relatively simple and can not find the complex path.
In this paper, we show that the routing scheme has a significant
influence on connectivity of CRAHN. Assuming two coexisting
ad hoc networks withm PUs andn SUs randomly distributed in
a unit area. And the relation betweenn andm is n = mβ . With
the horizontal data paths-vercical data paths (HDP-VDP) rout-
ing scheme, which is widely adopted in the analysis of through-
put scaling laws of ad hoc networks, whenβ > 1, we can guar-
antee the connectivity of a single SU, whenβ > 2, we can guar-
antee the connectivity of a single secondary path. While cir-
cumventing routing can improve the connectivity of CRAHN,
we show that whenβ > 1, we can guarantee the connectivity
of a single SU as well as the connectivity of a single secondary
path. Thus, to achieve the connectivity in secondary networks,
the density of SUs must be bigger than that of PUs asymptoti-
cally and a smart routing scheme is essential. Our research may
guide the deployment and routing design of cognitive radio net-
works.

The rest of this paper is organized as follows. The network
protocol and definitions are presented in Section II. The concept
of directional spectrum holes and the corresponding statistics
are provided in Section III. In Section IV, the throughput scaling
laws network protocols (asymptotic throughput) are derived. In
Section V, the connectivity of cognitive network is investigated.
This paper is summarized in Section VI.

II. NETWORK PROTOCOL AND DEFINITIONS

We considerm PUs andn SUs uniformly distributed in an
unit square, which share the same space and spectrum. The PUs
act as if the SUs do not exist while the SUs must mitigate the
interference to PUs. We assume thatn = mβ, whereβ is a
positive number. The channel power gain isg(r) = 1/rα, where
r is the distance between TX and RX, andα > 2 is the path loss
exponent. Both the primary and secondary networks are random
ad hoc networks. PUs act as if SUs do not exist, while SUs must
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Fig. 2. The HDP and VDP.

mitigate the interference to PUs. The network protocols of SUs
are as follows.

• Divide the unit square into small squares with areaas =
K logn/n,K > 1. Such a small square is called a sec-
ondary cell. Apreservation regionis a square containing9
secondary cells with a primary RX in the center cell. When a
secondary TX falls into this region, it detects the directional
spectrum opportunities. If there are no spectrum opportuni-
ties, it buffers the data and waits for other temporal or direc-
tional spectrum opportunities. The SUs employ the multi-hop
routing protocol.

• SUs employ a 9-ime division multiple access (TDMA) trans-
mission scheme. Similar to the approach in [6], the duration
of a secondary frame is equal to that of one primary time slot
(the reader is referred to Fig. 2 in [6] for details).

• SU’s traffic is transmitted along the HDPs and VDPs. A sec-
ondary TX searches for directional spectrum holes using a
DOA algorithm. If a spectrum hole exists, it transmits with
powerP1a

α/2
s , whereP1 is a constant. Different from the

apporaches in [5] and [6],more than onesecondary TX can
transmit in an active secondary cell as long as they can find
the spectrum opportunities.

A. Achievable Rate and Throughput

The rate of theith primary TX-RX pair is

Rp(i) = log

(

1 +
Pp(i)g (‖Xp,tx(i)−Xp,rx(i)‖)

N0 + Ip(i) + Isp(i)

)

(1)

wherePp(i) is the transmit power of theith primary TX, and
Xp,tx(i) andXp,rx(i) are the positions of theith primary TX
and RX, respectively.Ip(i) is the aggregate interference re-
ceived by theith primary RX from the primary network,Isp(i)
is the aggregate interference from the SU network to theith pri-
mary RX, andN0 is the power spectral density of the additive
white Gaussian noise (AWGN). In this paper, we normalize the
bandwidth to1. The data rate of thejth secondary TX-RX pair
is

Rs(j) = log

(

1 +
Ps(j)g (‖Xs,tx −Xs,rx‖)

N0 + Is(j) + Ips(j)

)

(2)

wherePs(j) is the transmit power of thejth secondary TX, and
Xs,tx(j) andXs,rx(j) are the positions of thejth secondary
TX and RX, respectively.Is(j) is the aggregate interference re-
ceived byjth secondary RX from the secondary network, and
Ips(j) is the aggregate interference from the PU network to the
jth secondary RX. We denote the PU and SU per-node through-
put asλp(m) andλs(n), respectively [6].

RXTX

PU

Fig. 3. Directional spectrum opportunities for SUs.

B. Definitions of Connectivity

As to the connectivity, because of the presence of PUs, a sec-
ondary cell may falls into the preservation region and result in
outage for a secondary path. Supposem PUs are randomly dis-
tributed in the unit area, wherem can be regarded as the number
of activePUs if we consider the dynamics of PUs’ traffic in tem-
poral dimension. We provide three definitions of connectivity.
1. Connectivity of a single node: For a specific secondary node,

if it is not an isolated nodew.h.p., then we can guarantee the
connectivity of the single node.

2. Connectivity of a single path: For a specific secondary
source-destination pair, if there exists a path between them
w.h.p., then we can guarantee the connectivity of the single
path.

3. Connectivity of network (connectivity of all nodes): If all the
nodes is not isolatedw.h.p., then we can guarantee connectiv-
ity of all nodes.

III. DIRECTIONAL SPECTRUM OPPORTUNITIES

In this section, firstly the notion of directional spectrum op-
portunity (hole) is introduced. Then, the statistics of directional
spectrum opportunities is addressed in Lemma 2. Finally, wein-
vestigate the number of PUs in the interference region of SU in
Lemma 3.

Fig. 3 shows a circular area with SU at the center and several
randomly distributed PUs. Denote the location of the SU asX ,
and the locations of the PUs asY1, Y2, · · ·, YL, whereL is the
number of PUs surrounding this SU. For example,L = 5 in Fig.
3. The reference line with angle0 is shown as the dashed line
XP . Denote the angle betweenXP andXYi asαi. Then, the
angle∠YiXYi+1 for i < L is

∠YiXYi+1 = αi+1 − αi
∆
= ∆i. (3)

∆i represents a directional spectrum opportunity (or spectrum
hole) for the SU. If the SU is able to transmit within this angle
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to a secondary RX, then the interference to the PUs will be small
(if the side lobes of the directional antenna are neglected). When
i = L, the angle∠YLXY1 is

∠YLXY1 = α1 − αL + 2π
∆
= ∆L (4)

which is another directional spectrum opportunity. Direction of
arrival (DOA) estimation algorithms can be employed in SUs to
find these directional spectrum opportunities. To determine the
angles with multiple PUs, multiple signal classification (MU-
SIC) algorithms [24] can be used. In addition, an antenna array
can be used in SUs to detect the directional spectrum opportuni-
ties and also for directional transmission.

For an SU withL PUs around it, there areL directional spec-
trum opportunities (L angles). AsL increases, these angles will
decrease and thus it will be more difficult to exploit the direc-
tional spectrum holes. The statistics of these directionalspec-
trum opportunities are given by the following lemmas.

Lemma 1 ([25]) For an ascending sequence of random vari-
able (r.v.)sX1, X2, · · ·, XL uniformly distributed in[0, 1], the
probability density function (PDF) of the range ofXr andXs,
with r < s, is

fWrs(wrs) =
1

B(s− r, L− s+ r + 1)
ws−r−1

rs (1 − wrs)
L−s+r

(5)
where0 ≤ wrs ≤ 1 and

B(a, b) =

∫ 1

0

ta−1(1− t)
b−1

dt, a > 0, b > 0. (6)

Lemma 2: The PDF of the angle of a directional spectrum
hole (denoted as∆) is

f∆(δ) =
L
(

1− δ
2π

)L−1

2π
, 0 ≤ δ ≤ 2π (7)

with expected value

E[∆] =
2π

L+ 1
. (8)

Proof: The sequence of the angles∆1,∆2, · · ·,∆L are
r.v.s. They are not independent since

L
∑

i=0

∆i = 2π. (9)

However, as shown in Fig. 3, the angleαi(i = 1, 2, · · ·, L) is
independent and identically distributed (i.i.d.) r.v. with uniform
distribution between0 and2π. The PDF ofαi is

f(α) =
1

2π
, 0 < α ≤ 2π. (10)

These angles are in ascending order, i.e.,α1 ≤ α2 ≤ · · · ≤ αL.
In addition,δi = αi+1 − αi, i < L, is the range of the r.v.’s
αi+1 andαi. In the theory of order statistics [25], the PDF of
the range of uniformly distributed r.v.’s is given by Lemma 1.
Let s = r + 1 in this lemma so thatWr = Xr+1 −Xr, which
has a PDF given by

fWr(wr) =
1

B(1, L)
(1 − wr)

L−1, 0 ≤ wr ≤ 1. (11)

LetXi = xi = αi/2π ∼ U(0, 1). If Wr = Xr+1−Xr we have
∆r = δr = αr+1 − αr = 2πWr, and from (11) the PDF is

f∆r(δr) =
L
(

1− δr
2π

)L−1

2π
, 0 ≤ δr ≤ 2π (12)

where the relationB(1, L) = 1/L is used. Although the∆i’s
are not independent, they are identically distributed. Omitting
the indexr, the PDF of the directional spectrum holes is

f∆(δ) =
L
(

1− δ
2π

)L−1

2π
, 0 ≤ δ ≤ 2π (13)

with expected value

E[∆] =

∫ 2π

0

δf∆(δ)dδ =
2π

L+ 1
. (14)

2

When the angle of the main lobe∆ has a lower boundδth, ac-
cording to Lemma 2, the probability that a directional spectrum
hole is available is given by

Pr{∆ > δth} =

(

1− δth
2π

)L

→ 0 (whenL → ∞) (15)

whereL is the number of PUs in the interference region of SU.
An interference regionis a square containing 9 secondary cells
with an SU in the center cell. Note that theL PUs in (15) are in
a circle, while the interference region is a square. However, the
difference between these shapes can be ignored, as the (tight)
upper and lower bounds onPr{∆ > δth} can be achieved by
addressing the PUs in the inscribed circle or circumscribedcir-
cle of the interference region. The number of PUsL in an inter-
ference region is given in the following lemma.

Lemma 3: Denote the number of PUs in the interference re-
gion of an SU asL, which is a function ofn (or m). Then, for
different values ofβ, we have three cases as follows.
1. If β > 1, then for any positive numberε,

lim
n→∞

Pr{L ≥ ε} = 0 (16)

namely,L converges to0 in probability.
2. If β = 1, we have

9K

(

1

2
− 1

e

)

logn ≤ L ≤ 9Ke logn (17)

w.h.p., namely,l = Θ(logn).
3. If β < 1, we have

9K

(

1

2
− 1

e

)

logn ≤ L ≤ 9Ken1/β−1 logn (18)

w.h.p..
Proof: This lemma investigates the number of PUs in the

interference region of SUs. For a particular secondary cell, a PU
Xi, i = 1, 2, · · ·,m falls in its interference region with probabil-
ity pn = 9as = 9K logn/n, which is a Bernoulli event. Denote
the number of PUs in the interference region asL, which is a r.v.
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follows Bernoulli distribution with parameters(pn,m). And the
expectation ofL is

E[L] = pnm = 9Kn1/β−1 logn. (19)

Notice that whenβ > 1, lim
n→∞

E[L] = 0. We use the Markov

inequality to determine the upper bound ofL. For any positive
numberε, we have

Pr{L > ε} ≤ E[L]

ε
→ 0. (20)

Let ε = 1/2, then we havePr{L > 1/2} → 0. As L is a
positive integer, thusL converges to0 in probability.

Whenβ ≤ 1, we use the Chernoff bound to get the lower
bound ofL, which is

Pr{L ≤ a} ≤ min
t<0

E
[

etL
]

eta

(a)
= min

t<0

(1 + (et − 1)pn)
m

eta

(b)

≤
(

1 + (e−φ − 1)pn
)m

e−φa

(c)

≤
exp

(

m logn9K(e−φ
−1)

n

)

e−φa

(21)

where(21a) is derived by substituting the value ofE[etL], (21b)
is derived by replacingtwith a negative constant−φ. According
to the inequality1 + x ≤ ex, we have

(

1 + (e−φ − 1)pn
)m ≤

exp
(

m logn9K(e−φ
−1)/n

)

and(21c) is derived. Forβ ≤ 1,

substituteφ = 1, m = n1/β anda = 9K (1/2− 1/e) logn into
(21), we have

Pr{L ≤ a} ≤
exp

(

n1/β logn9K(e−1
−1)

n

)

exp
(

−9K(12 − e−1) logn
)

(d)

≤
exp

(

logn9K(e−1
−1)
)

exp
(

−9K(12 − e−1) logn
)

=
n9K(e−1

−1)

n−9K( 1
2−e−1)

=
1

n9K( 1
2−e−1)

(22)

where (22d) is due ton1/β ≥ n. Since9K(1/2 − e−1) >

0, we have1/n9K(1/2−e−1) → 0. Thus, for β ≤ 1, the
lower bound ofL is 9K(1/2 − e−1) logn w.h.p.. Actually, we
have 9K(1/2− e−1) > 1 becauseK > 1. Use the union
bound, the probability that the number of PUs inanysecondary
cell is more than9K(1/2 − e−1) logn PUs is smaller than
n/
(

K logn × n9K(1/2−e−1)
)

→ 0, which means the number
of PUs in all SUs’ interference regions are lower bounded by
9K(1/2− e−1) logn.

To find the upper bound ofL, we use the Chernoff bound.

Pr{L ≥ a} ≤ min
t>0

E
[

etL
]

eta

= min
t>0

(1 + (et − 1)pn)
m

eta

(e)

≤
(

1 + (eφ − 1)pn
)m

eφa

(f)

≤
exp

(

m log n9K(eφ−1)

n

)

eφa

(23)

where(23e) and(23f) use the similar technique as(21b) and
(21c) respectively. Andφ is a positive number. We address two
situations as follows.
• For the caseβ = 1, substituteφ = 1, m = n anda =

9Ke logn into (23), we have

Pr{L ≥ a} ≤
exp

(

n logn9K(e−1)

n

)

e9Ke logn

=
n9K(e−1)

n9Ke
=

1

n9K
.

(24)

As 9K > 0, we have1/n9K → 0. Thus, forβ = 1, the
upper bound ofL is 9Ke logn w.h.p.. Similar with previous
discussion, as we have the relation9K > 1 becauseK > 1,
use the union bound, the probability that the number of PUs
in anysecondary cell is more than9Ke logn is smaller than
n/(K logn× n9K) → 0.

• For the caseβ < 1, substitutem = n1/β and a =
9Ken1/β−1 logn into (23), we have

Pr{L > a} ≤
exp

(

n1/β logn9K(e−1)

n

)

e9Ken1/β−1 logn

=
1

n9Kn1/β−1
.

(25)

As 9Kn1/β−1 > 0, we have1/n9Kn1/β−1 → 0, which
means9Ken1/β−1 log n is the upper bound ofL w.h.p.Sim-
ilar with previous discussion, we have9Kn1/β−1 > 1, thus
n/(K logn × n9Kn1/β−1

) → 0. Namely, the probability
that the number of PUs inany secondary cell is more than
9Ken1/β−1 logn tends to 0.

2

According to Lemma 3 and Lemma 2, spectrum opportunities
will exist whenβ > 1. Thus, when investigating the through-
put with directional transmission, we only consider the situation
whenβ > 1. In this paper, we investigate the cases of omnidi-
rectional transmission and omnidirectional reception (OTOR),
DTOR, OTDR, and DTDR.

IV. ASYMPTOTIC THROUGHPUT

In order to derive the per-node throughput of primary and
secondary networks, we should investigate the data rate that a
primary/secondary cell can support and the number of concur-
rent routings that pass through a primary/secondary cell. In the
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δ

Preservation region of PU

SU interferes PU

PU SU

Fig. 4. The interference from a secondary TX to a primary RX. The
dashed boxes denote the 9-TDMA cluster and the shaded squares
are the active secondary cells.

derivation of per-node throughput of primary networks, Lemma
4 has addressed the data rate that a primary cell can support and
Lemma 5 has investigated the number of primary paths that pass
through a primary cell. In the derivation of per-node through-
put of secondary networks, Lemma 6, Lemma 7, Lemma 8, and
Lemma 9 have investigated the data rate that a secondary cell
can support. Because the secondary and primary networks both
adopt the HDP-VDP routing protocol, the number of secondary
paths that pass through a secondary cell is similar to that inpri-
mary networks.

A. Throughput of Primary Network

To determine the PU throughput, we require the following
two lemmas.

Lemma 4: If one primary RX receives interference from at
most one secondary TX in a secondary cell, then each primary
cell can support a data rate ofK1, whereK1 is a constant inde-
pendent ofm or n.

Proof: The data rate of theith primary cell is

Rp(i) =
1

9
log

(

1 +
Pp(i)g (‖Xp,tx(i)−Xp,rx(i)‖)

N0 + Ip(i) + Isp(i)

)

(26)

where1/9 denotes the rate loss due to 9-TDMA transmission,
Ip(i) is the interference suffered by primary RXi within pri-
mary network andIsp(i) is the interference suffered by primary
RX i from secondary TXs. If one primary RX receives interfer-
ence from at most one secondary TX in a secondary cell, both
[5] and [6] have proved thatIp(i) andIsp(i) are finite when SUs
adopt the 9-TDMA (or 25-TDMA) protocol. Hence, the inter-
ference suffered by primary RX is bounded. Thus, we have

Isp(i) ≤ Isp < ∞, (27)

Ip(i) ≤ Ip < ∞ (28)

so that

Rp(i) >
1

9
log

(

1 +
P0

(√
ap
)α(√

5ap
)

−α

N0 + Ip + Isp

)

=
1

9
log

(

1 +
P0

(√
5
)−α

N0 + Ip + Isp

)

∆
= K1 < ∞.

(29)

2

As an example of Lemma 4, for the case of DTOR in Fig. 4,
if the main lobes of the secondary TXs in a secondary cell do
not overlap, each primary cell can support a constant data rate
of K1.

Lemma 5: With the primary network protocol in [5], the
number of primary source-destination paths passing through a
primary cell is upper bounded by4

√
2m logm w.h.p..

The PU throughput is given in the following theorem.
Theorem 1: The primary network can achieve a per-node

throughput ofλp(m) = Θ(1/
√
m logm) w.h.p..

Proof: If Lemmas 4 and 5 are satisfied, the results
in [5], [6], and [21] show that there exists a TDMA trans-
mission scheme such that a data rate ofK1 is shared by
4
√
2m logm paths. We only need to divide the entire time

slot into Θ(
√
m logm) small time slots and each transmis-

sion use one of them. Thus, the PU per-node throughput is
Θ(1/

√
m logm). 2

B. Throughput of Secondary Network: OTOR

The case of OTOR has been investigated in [5] and [6], and
they have shown that the per-node throughput of secondary net-
work isΘ(1/

√
n logn), which is the same as a stand-alone net-

work.

C. Throughput of Secondary Network: DTOR

For SU TXs in secondary cells, we have the following lemma.
Lemma 6: If one primary RX receives interference from at

most one secondary TX in a secondary cell, then each TX in
the secondary cell can support a data rate ofK2, whereK2 is a
constant independent ofm or n.

Proof: The proof is similar to that of Lemma 4. 2

For the case of DTOR, if the main lobes of the secondary
TXs in a secondary cell do not overlap with each other, then
each secondary cell can support a data rate ofK2. Denote the
angle of theith secondary TX’s main lobe by∆i. To obtain the
highest throughput in the secondary network, we adopt the most
compact case where

∑ξ
i=1 ∆i = 2π, i.e., the directional oppor-

tunities are all occupied by secondary TXs. In this case, thedata
rate that a secondary cell can support will beξK2, which is ξ
times bigger than for a secondary cell that does not use direc-
tional transmission. If the SU’s main lobe isδ = o (1/logn),
we have the following lemma.

Lemma 7: If the angle of the secondary TX’s main lobe is
δ = o (1/logn), then the data rate that each secondary cell can
support isΘ(logn) w.h.p..

Proof: According to Lemma 8, the number of SUs in a
secondary cell isΘ(logn). When the angle of the secondary
TX main lobe isδ = o (1/logn), all secondary TX nodes in
an active secondary cell can transmit with the constraint that
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the main lobes do not overlap. Since a secondary cell has
Θ(logn) = c2 log n TX nodes, from Lemma 6, the data rate
that a secondary cell can support isc2K2 logn = Θ(logn). 2

Lemma 8: If K(1/2− 1/e) > 1, then the number of SUs in
a secondary cell isΘ(logn).

Proof: According to [21, Lemma 5.7], an upper bound
on the number of SUs in a secondary cell isΘ(logn). Us-
ing an approach similar to the proof of Lemma 3, the condition
K(1/2− 1/e) > 1 gives that the lower bound is alsoΘ(logn).

2

Lemma 9: If the angle of the secondary TX’s main lobe is
δ = ω(1/logn), then the achievable data rate that each sec-
ondary cell can support isK22π/δ.

Proof: Whenβ > 1, directional spectrum holes exists
w.h.p.(Lemma 3), but the number of SUs in a secondary cell is
Θ(logn) → ∞. Thus, the number of main lobes (namely, the
number ofactive secondary TXs) ξ is asymptotically smaller
than the number of SUs. And the maximum value ofξ is 2π/δ.

2

Similar to Lemma 5, the number of secondary source-
destination paths passing through each secondary cell is upper
bounded by4

√
2n logn w.h.p.. Using Lemmas 6, 7, and 9, the

SU throughput is given in the following theorem.
Theorem 2: In the case of DTOR, with the given secondary

network protocol, when the main lobe of secondary TX is
δ = o (1/logn), the secondary network can achieve a per-
node throughput ofλs(n) = Θ(

√

logn/n) w.h.p.. Whenδ =
ω(1/logn), the throughput gain of secondary network is2π/δ.

Proof: When δ = o (1/logn), one secondary cell can
support a data rate ofKc2 logn, which is shared by4

√
2n logn

paths. Thus, the per-node throughput isΘ(1/
√
n logn). When

δ = ω(1/logn), the gain of data rate in the secondary cell
is 2π/δ compared with the secondary networks without direc-
tional transmission, and the per-node throughput gain is also
2π/δ. When SUs have no transmission opportunities and need
to buffer their data, the data rate should be multiplied by anop-
portunistic factor [6]. However, this factor is a constant that will
not change the scaling results obtained. In fact, forβ > 1, the
opportunistic factor is 1w.h.p.because directional spectrum op-
portunities always exist. 2

D. Throughput of Secondary Network: OTDR

For the case of OTDR, denote the angle of the main lobe of
secondary RX asφ. Then, if δφ = ω(1/logn), the achievable
data rate that each secondary cell can support isK22π/φ. If
φ = o (1/logn), the achievable data rate that each secondary
cell can support isKc2 logn. Thus, we have the conclusion as
follow.

Theorem 3: In the case of OTDR, with the given secondary
network protocol, when the main lobe of secondary RX is
φ = o (1/logn), the secondary network can achieve a per-
node throughput ofλs(n) = Θ(

√

logn/n) w.h.p.. Whenδφ =
ω(1/logn), the throughput gain of secondary network is2π/φ.

E. Throughput of Secondary Network: DTDR

For the case of OTDR, ifδφ = ω(1/logn), the achievable
data rate that each secondary cell can support isK24π

2/δφ. If
δφ = o (1/logn), the achievable data rate that each secondary

SUTX

Fig. 5. SUs encounter the preservation region, where the shaded part is
the preservation region of a primary RX and “×” means an outage:
(a) The OTOR case and (b) the DTDR case.

cell can support isKc2 log n. Thus, we have the conclusion as
follow.

Theorem 4: In the case of OTDR, with the given secondary
network protocol, when the main lobe of secondary RX is
δφ = o (1/logn), the secondary network can achieve a per-
node throughput ofλs(n) = Θ(

√

log n/n) w.h.p.. When
δφ = ω(1/logn), the throughput gain of secondary network
is 4π2/δφ.

V. ASYMPTOTIC CONNECTIVITY

SUs with the network protocol in Section II can guarantee
connectivity if PUs do not exist, i.e., there are at least oneSU
in each secondary cellw.h.p.. However, as the presence of PUs,
a secondary cell may falls into the preservation region and will
result in outage for a secondary path, as illustrated in Fig.5(a).
However, SUs in the preservation region can still receive data,
which is also illustrated in Fig. 5(a). In this paper, we suppose
m PUs are randomly distributed in the unit area, wherem can
be regarded as the number ofactivePUs if we consider the dy-
namics of PUs’ traffic in temporal dimension. It is noted thatn
andm are also the density of SUs and PUs respectively, since
the SUs and PUs are deployed in a square with unit area. With
directional transmission and direction reception, the preserva-
tion region is reduce and the probability of outage event is also
reduced, which is illustrated in Fig. 5(b).

A. Connectivity of Cognitive Networks with HDP-VDP Routing

With the network protocol in Section II, an SU is not an iso-
lated node if and only if it does not fall into the preservation
region of any PU. Thus, the connectivity of SUs is related with
PUs and we firstly investigate the number of PUs in theinterfer-
ence regionof SUs, where interference region is a square con-
taining 9 secondary cells with a secondary TX in the center cell.
If a PU falls into theinterference regionof a SU, then the SU
falls into thepreservation regionof the PU. The number of PUs
L in an interference region of SU is given in Lemma 3.
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RX SU

Fig. 6. The connectivity of a secondary path if there are no PUs in the
shaded region, this path is connected: (a) The OTOR case and (b)
the DTDR case.

A.1 Connectivity of a Secondary Node

Since we assumen = mβ , the lower and upper bounds ex-
pressed byn can also be expressed bym, Thus, we have another
version of Lemma 3 usingm. Whenβ > 1, the number of PUs
in the interference region of a specific SU tends to 0 in proba-
bility, thus we have a theorem.

Theorem 5: Whenβ > 1, with the HDP-VDP routing, we
can guarantee the connectivity of a single SUw.h.p..

A.2 Connectivity of a Secondary Path

We define the interference region of a secondary path in this
section. As illustrated in Fig. 6, the shaded region is the inter-
ference region of the secondary path, which is the union of the
interference regions of all the SUs along this path. The PUs in
the interference region of the secondary path will suffer the in-
terference from secondary TX. We investigate the connectivity
of a secondary path and have a theorem.

Theorem 6: Whenβ > 2, with the HDP-VDP routing, we
can guarantee the connectivity of a single secondary pathw.h.p..

Proof: As illustrated in Fig. 6, if there are no PUs in the
interference regions of the secondary path, then the connectiv-
ity of this path can be guaranteed. As the distance between the
source and destination of this path isΘ(1), thus the number of
hops is

M = Θ

(

1√
as

)

= Θ

(
√

n

logn

)

∆
= c1

√

n

logn
(30)

wherec1 is a constant,as is the area of a secondary cell. For
the case of OTOR, the number of secondary cells along the sec-
ondary path is

N = c1

√

n

logn
+

(

c1

√

n

logn
− 2

)

+

(

c1

√

n

logn
+ 2

)

= 3c1

√

n

logn
.

(31)
For the case of DTOR, OTDR, and DTDR, the number of

secondary cells along the secondary path is less thanN =
3c1
√

n/logn in (31), which is illustrated in Fig. 6(b). We
investigate the probability that there are no PUs inN =
3c1
√

n/logn secondary cells. Denote the number of PUs inN

RX SU

Fig. 7. Secondary path goes around if it is blocked by a preservation
region.

secondary cells asΩ. Similar with the proof in Lemma 3,Ω is
a r.v. follows Bernoulli distribution with parameters(p∗n,m),
where

p∗n = 3c1

√

n

logn

K logn

n
= 3Kc1

√

logn

n
. (32)

Thus, the expectation ofΩ is

E[Ω] = p∗nm = 3Kc1n
1
β−

1
2

√

logn. (33)

Whenβ > 2, we haveE[Ω] → 0. Use Markov inequality, for
any positive numberε, we have

Pr{Ω > ε} ≤ E[Ω]

ε
→ 0. (34)

Let ε = 1/2, thenPr{Ω > 1/2} → 0. As Ω is an integer,
thus there are no PUs along a secondary pathw.h.p..

When1 < β < 2, use a similar technique as Lemma 3, we
can get the lower bound ofΩ as3Kc1(1/2−e−1)

√
logn, which

does not converge to0 whenn → ∞. Thus,β > 2 is the nec-
essary and sufficient condition to guarantee the connectivity of
a secondary path for HDP-VDP routing scheme. 2

Note that for the case of DTOR, OTDR, and DTDR, the
number of secondary cells along the secondary path is of or-

derΘ
(

√

n/logn
)

. Thus, Theorem 5 and 6 are also satisfied

for the case of DTOR, OTDR, and DTDR.

A.3 Connectivity of All SUs

As PUs and SUs share the same geographic area, thus there
must be an secondary cell that contains at least one PU, then
the connectivity of the secondary path originated from thissec-
ondary cell cannot be guaranteed. Thus, the connectivity ofall
SUs is not feasible for SUs and PUs coexisted network.

B. Connectivity of Cognitive Networks with Circumventing
Routing

According to Theorem 6, to guarantee the connectivity of a
secondary path, we must haveβ > 2, namely, the SUs must be
much denser than PUs. To achieve a better connectivity when
the SUs is not that dense, the secondary path can go around if it
is blocked by a preservation region of PU. As illustrated in Fig.
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RX SU

Fig. 8. PUs block the transmission of SU, where “×” means an outage.

Fig. 9. The preservation region chain (PRC): (a) Open structure, (b)
closed structure, and (c) open structure.

7, which is proposed in [5] but the connectivity is not fully an-
alyzed therein. With this circumventing routing, we summarize
the outage cases for SUs.
1. The source of a secondary path falls in a preservation region

of PU, which is illustrated in Figs. 8(a) and (b), where the
source of a secondary path is located in the preservation re-
gion, thus an outage will occur.

2. When the preservation regions enclose a secondary source
or destination, this secondary path will be in outage, whichis
illustrated in Figs. 8(c) and (d).
To investigate the connectivity of a secondary path with cir-

cumventing routing, we firstly define the PRC as follow.
Definition 1: PRC is a set of preservation regions, that each

preservation region in PRC has al least one adjacent neighbors
(preservations regions).

Some of the PRCs are listed in Fig. 9, where Fig. 9(a) and 9(c)
can not block a secondary path, while Fig. 9(b) can block the
secondary path that has a source or destination inside it. Before
investigating the PRC, we need a definition.

Definition 2: Primary cell: Divide the unit square into
m/2 logm small squares, which is defined as “primary cell”.
The area of a primary cell isap = 2 logm/m.

There is a lemma related with the primary cell, which is
Lemma 5.7 in [21].

Lemma 10: Each primary cell holds at least one but no more
than2e logm PUs w.h.p..

As to the PRC, we have a lemma as follow.
Lemma 11: If β > 1, then any preservation region chain

(PRC) cannot pass through a primary cell w.h.p..

Proof: If β > 1, then a primary cell containsNm sec-
ondary cells and we have

Nm = Θ

(

2 logm
m

K logn
n

)

= c2m
β−1 (35)

wherec2 is a constant. If a PRC pass through a primary cell,
it needs at least

√
Nm/3 =

√
c2/3m

β−1/2 PUs in this primary
cell, where the preservation regions of this PRC form a line and
are not overlapped. According to Lemma 10, the number of
PUs in a primary cell is at most2e logm and we notice that
2e logm <

√
Nm/3 whenm is sufficiently large. Thus, there

are no sufficient PUs inanyprimary cell that can support a PRC
that pass through this primary cell. 2

As to the maximum number of preservation regions in a PRC,
we have a lemma as follow.

Lemma 12: For β > 1, the number of preservation regions
in any PRC is at most18e logm w.h.p.

Proof: We choose a preservation region in a PRC. When
β > 1, according to Lemma 11, the PRC can not pass through a
primary cell. Thus, the PRC is confined in a cluster of 9 primary
cells where the center cell contains a preservation region of the
PRC. According to Lemma 10, the number of PUs in cluster of
9 primary cells is at most18e logm, thus the maximum number
of preservation regions in a PRC is at most18e logm w.h.p.. 2

If SUs adopt the circumventing routing, we have a lemma.
Lemma 13: Forβ > 1, the number of SUs that is blocked by

preservation regions or PRCs is at mostΘ(m(logm)2) w.h.p.
Proof: We denote the area of all preservation regions asA1

and the area of the isolated area enclosed by PRCs asA2. Thus,
the area of the regions where SUs are blocked by PUs isA =
A1+A2. When the preservation regions are not overlapped,A1

has an upper bound.

A1 ≤ 9m
K logn

n
= 9Kn1/β−1 logn. (36)

As illustrated in Fig. 10, the maximum isolated area that is
environed by a PRC is a quarter circle. A PRC has at most
18e logm preservation regions (Lemma 12), and each preser-
vation region contribute a length of6

√
as to the circumference

of the quarter circle at most, thus the radius of the quarter circle
is (216e

√
as logm)/π at most. We suppose that each PRC en-

close a quarter circle and can find an upper bound of the isolated
area surrounded by PRCs.

A2 ≤ m

18e logm

π

4

(

216e
√
as logm

π

)2

=
648e

π
asm logm.

(37)

According to (36) and (37), we have

A ≤ 9β

(

K +
72e

π
K logm

)

m1−β logm
∆
= Au. (38)

We investigate the number of SUs in the block region with area
A, which is denoted asNA and is a r.v. follows Bernoulli dis-
tribution with parameters(Au, n). Use the Chernoff bound, we
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r SU

Fig. 10. The largest block area of PUs, where “×” means an outage.
This figure is a modification of Fig. 8 in [5].

will showNA ≤ Auen w.h.p.

Pr{NA > Auen} ≤ min
t>0

E
[

etNA
]

etAuen

(a)
= min

t>0

(1 + (et − 1)Au)
n

exp (tAuen)

(b)

≤ (1 + (e− 1)Au)
n

exp (enAu)

(c)

≤ exp ((e− 1)nAu)

exp (enAu)

= exp (−nAu) → 0

(39)

where(39a) is derived by substituting the value ofE[etNA ],
(39b) is derived by replacingt with 1. According to the inequal-
ity 1 + x ≤ ex, we can achieve(39c). According to (39), we
have the upper bound ofNA, which isAuen = Θ(m(logm)2)

2

According to Lemma 13, the fraction of SUs that is blocked
by PUs is

1

n
Θ(m(logm)2) = Θ(

(logm)
2

mβ−1
) = Θ(

(logn)
2

n1−1/β
) → 0. (40)

Thus, we have a theorem as follow.
Theorem 7: Whenβ > 1, with the circumventing routing,

we can guarantee the connectivity of a single SUw.h.p.
Thus, the connectivity of a single secondary node can be guar-

anteed with circumventing routing whenβ > 1. As to the con-
nectivity of a single secondary path, we have a theorem.

Theorem 8: Whenβ > 1, with the circumventing routing,
we can guarantee the connectivity of a single secondary path
w.h.p..

Proof: The source and destination nodes are not blocked
by PRCsw.h.p.. Besides, the PRCs cannot block the secondary
path. As in Fig. 11, a secondary path arrives at a primary cell, to
block this secondary path, the PRCs must enclose the primary
cell (or at least an edge of the primary cell). However, according
to Lemma 11, a PRC cannot pass through the primary cell, thus
PRCs are impossible to enclose the primary cell and block the
secondary path. The secondary path will circumvent the PRCs
and reach the destination, as illustrated in Fig. 11. 2

SU

Fig. 11. The circumventing routing.

However, the circumventing routing still cannot guaranteethe
connectivity of the whole secondary networks (all SUs). Be-
sides, whenβ ≤ 1, according to Lemma 3, the number of PUs
in the interference region of a SU is at least1 w.h.p., thus the
preservation regions will always cover the SUs. Even adopt-
ing the circumventing routing, the connectivity of a singleall
SUs is still impossible. Finally, for the case of DTOR, OTDR,
and DTDR, whenβ > 1, with the circumventing routing, we
can guarantee the connectivity of a single secondary pathw.h.p.,
namely, the condition for the connectivity of OTOR is the suffi-
cient condition of connectivity for DTOR, OTDR, and DTDR.

VI. CONCLUSION

In this paper, we show that the throughput of secondary net-
work can be improved by exploiting directional spectrum op-
portunities. If the beamwidth of secondary TX’s main lobe
is δ = o(1/logn), SUs can achieve a per-node throughput of
Θ(1/

√
n logn) for DTOR, which isΘ(logn) times higher than

the throughput without directional transmission. Similarly, if
the beamwidth of secondary RX’s main lobe isφ = o(1/logn),
SUs can achieve a per-node throughput ofΘ(1/

√
n logn) for

OTDR. If δφ = ω(1/logn), SUs can achieve a per-node
throughput ofΘ(1/

√
n logn) for DTDR. On the contrary, if

δ = ω(1/logn), the throughput gain of SUs is2π/δ for DTOR
compared with the throughput without directional transmission.
If δφ = ω(1/logn), the throughput gain of SUs is2π/φ for
OTDR. If δφ = ω(1/logn), throughput gain of SUs is4π2/δφ
for DTDR.

We also investigate the connectivity of random cognitive ra-
dio networks with different routing schemes, namely, the HDP-
VDP routing and circumventing routing. Assuming two coex-
isting ad hoc networks withm PUs andn SUs randomly dis-
tributed in a unit area andn = mβ , we have achieved some
conclusions as follows.
1. If we adopt the HDP-VDP routing, then whenβ > 1, we can

guarantee the connectivity of a single SU, whenβ > 2, we
can guarantee the connectivity of a single secondary path.

2. If we use the circumventing routing, then whenβ > 1, we
can guarantee the connectivity of a single SU as well as the
connectivity of a single secondary path.

3. We can not guarantee the connectivity of the whole sec-
ondary network no matter whatβ is.

4. Whenβ ≤ 1, we can not guarantee the connectivity for both



WEI et al.: THE ASYMPTOTIC THROUGHPUT AND CONNECTIVITY OF COGNITIVE... 237

the HDP-VDP routing and circumventing routing.
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