• Title/Summary/Keyword: code-provisions

Search Result 294, Processing Time 0.02 seconds

Crack Control in Beams and One-Way Slabs (보 및 1방향 슬래브의 균열제어)

  • Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.381-390
    • /
    • 2012
  • The KCI Building Code (2003 and 2007) provisions to control flexural cracking in beams and one-way slabs are discussed for related researches and the development of the provisions. Based on the basic ideas over the development of current provisions, possible problems with cracking control are identified and discussed for the remedies to fix the problems. Simple and clear equations to control flexural cracking in beams and one-way slabs are presented. The presented equations would avoid any conflicts with other provisions for the spacing of reinforcement.

The Study on the Necessity of Seismic Design for Fire Protection System and the Establishment of Standard (소방시설 내진설계의 필요성과 기준정비에 관한 연구)

  • Shin, Yi-Chul;Han, Byung-Chan;Park, Sun-Gyu;Lee, Hyun-Jin;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.6-12
    • /
    • 2009
  • In this paper, provisions related with the seismic design and equipments of fire protection system are being considered. The provisions from various international codes on seismic design fire protection system were reviewed. The codes, reviewed are, Japanese code, NFPA guideline and Korean Code. It is noted that all the codes excepted to Korean Code consider earthquake effect to evaluate seismic forces and behaviors. But, korean provision are not covered in seismic response in all. A brief description on limitations in Korean Code is also presented.

The Choice of Applicable Law and the Limitations of Party Autonomy - Focusing on International Sports Arbitration - (중재의 준거법 선택과 당사자 자치의 제한 - 국제스포츠중재를 중심으로 -)

  • Yoo, So-Mi
    • Journal of Arbitration Studies
    • /
    • v.31 no.2
    • /
    • pp.23-46
    • /
    • 2021
  • Sports disputes have specific characteristics compared to disputes that arise in the field of commerce. One particularity is the judicial system in which the CAS plays a key role as the International Supreme Court for sports-related matters. The CAS Code applies whenever the parties agree to submit a sports-related dispute to the CAS(Art. R27). Once the parties to the arbitration agreement have decided that the CAS Code should govern their proceedings. The parties' autonomy is, however, limited to the provisions of the CAS Code that provide for such a corresponding autonomy. The application of the mandatory rules contained in the CAS Code cannot be excluded. In CAS appeals arbitration proceedings, the Panel shall decide the dispute according to the applicable sports regulations and, subsidiarily, to the rules of law chosen by the parties(Art. R58). In international sports disputes, the uniform application and interpretation of the relevant regulations are essential. Therefore, Art. R58 should be applied as a mandatory rule without any changes. Regulations of the sports organizations are to be qualified as valid rules of law. CAS panels may also apply the so-called lex sportiva to the merits before considering statutory provisions of national jurisdictions. In this way, the specificities in (international) sports disputes can be taken into account without the need to further examine the application of national legal standards.

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.

Investigation into shear properties of medium strength reinforced concrete beams

  • Shah, Attaullah;Ahmad, Saeed;Khan, Salimullah
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.265-282
    • /
    • 2010
  • The shear contribution of transverse steel in reinforced concrete beams is generally assumed as independent of the concrete strength by most of the building codes. The shear strength of RC beams with web reinforcement is worked out by adding the individual contributions of concrete and stirrups. In this research 70 beams of medium strength concrete in the range of 52-54 MPa, compressive strength were tested in two sets of 35 beams each. In one set of 35 beams no web reinforcement was used, whereas in second set of 35 beams web reinforcement was used to check the contribution of stirrups. The values have also been compared with the provisions of ACI, Eurocode and Japanese Code building codes. The results of two sets of beams, when compared mutually and provisions of the building codes, showed that the shear strength of beams has been increased with the addition of stirrups for all the beams, but the increase is non uniform and irregular. The comparison of observed values with the provisions of selected codes has shown that EC-02 is relatively less conservative for low values of longitudinal steel, whereas ACI-318 overestimates the shear strength of RC beams at higher values of longitudinal steel. The Japanese code of JSCE has given relatively good results for the beams studied.

Required ties in continuous RC beams to resist progressive collapse by catenary action

  • Alrudaini, Thaer M.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.403-411
    • /
    • 2021
  • Ties are mandated by many design guidelines and codes to prevent the progressive collapse of buildings initiated by local failures. This study develops a model to estimate catenary/cable action capacity and the required ties in continuous reinforced concrete beams to bridge above the potential failed interior columns. The developed model is derived based on virtual work method and verified using test results presented in the literature. Also, parametric investigations are conducted to estimate the required ties in continuous reinforced concrete beams supporting one-way slab systems. A comparison is conducted between the estimated tie reinforcement using the developed model and that provided by satisfying the integrity provisions of the ACI 318-14 (2014) code. It is shown that the required tie reinforcements to prevent progressive collapse using the developed model are obviously larger than that provided by the integrity requirements of the ACI 318-14 (2014) code. It has been demonstrated that the increases in the demanded tie reinforcements over that provided by satisfying ACI 318-14 (2014) integrity provisions are varied between 1.01 and 1.46.

Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement

  • Derogar, Shahram;Ince, Ceren;Mandal, Parthasarathi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.203-215
    • /
    • 2018
  • A large body of experiments have been conducted to date to evaluate the punching shear strength of flat slab-column connections, but it is noted that only a few of them have been considered for the development of the ACI Code provisions. The limited test results used for the development of the code provisions fall short of predicting accurately the punching shear strength of such connections. In an effort to address this shortfall and to gain an insight into the factors that control the punching shear strength of flat slab-column connections, we report a qualified database of 650 punching shear test results in this article. All slabs examined in this database were tested under gravity loading and do not contain shear reinforcement. In order to justify including any test result for evaluation punching shear database, we have developed an approved set of criteria. Carefully established set of criteria represent the actual characteristics of structures that include minimum compressive strength, effective depths of slab, flexural and compression reinforcement ratio and column size. The key parameters that significantly affect the punching shear strength of flat slab-column connections are then examined using ACI 318-14 expression. The results reported here have paramount significance on the range of applicability of the ACI Code provision and seem to indicate that the ACI provisions do not sufficiently capture many trends identified through regression of the principal parameters, and fall on the unsafe side for the prediction of the punching shear strength of flat slab-column connections.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.

Shear Strength of R/C Shear Walls with Openings (개구부를 갖는 전단벽의 전단강도)

  • 윤현도;최창식;황선경;한병찬;박완신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.223-228
    • /
    • 2003
  • Results of 61 framed reinforced concrete shear walls with openings were reviewed to evaluate the current design provisions for nominal shear strength. Provisions for ACI 318-02 and AIJ Code pertaining to shear design of shear walls evaluated the applicability of shear walls with openings subjected to lateral and vertical loads. Evaluation of test results indicates that the nominal unit shear strength($\Psi$=1.0) calculated using the provisions of ACI and AIJ does not represent the observed shear strength well. Based on the limited database considered in this study, A reasonable lower bound to the shear strength of high-strength concrete shear walls is found to be $1.09\sqrt{f_{cu}}$ kgf/$\textrm{cm}^2$.

  • PDF