• Title/Summary/Keyword: coating film

Search Result 1,908, Processing Time 0.027 seconds

Printing Performance Evaluation of Water-dispersed Pigment Ink according to Additive Conditions of Film Substrate Surface Coating Agent (필름기재 표면 코팅제의 첨가물질 조성 조건에 따른 수분산 안료잉크의 프린팅 성능 평가)

  • Hyeok-Jin Kim;Hye-Ji Seo;Eun-Ha Kang;Min-Woo Han;Dong-Hyeon Lee;Dong-Jun Kwon;Jin-Pyo Hong
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.196-205
    • /
    • 2023
  • Water-dispersed pigment is on-going study for without air pollution in the textile and print industry. Primer treatment is essential for the substrate to improve the printing quality of eco-friendly water-dispersed pigment ink. Otherwise in the case of untreated primer, the water-dispersed pigment ink will dry onto the surface and cause defective images. This study was conducted on film substrate coating (primer) to fix eco-friendly water-dispersed pigment ink on film substrate. The drying, bleeding, and color strength of the pigment ink were examined depending on the composition and mixing ratio of the coating solution. The mixing ratio of silica gel in the coating film is increased to 0, 0.5, 1, 2 and 3 and results that DK-1-3 of silica gel ratio of 1 showed the lowest bleeding such as 52%, the letter thickness of 0.76mm and DK-1-5 of SG ratio of 3 showed the highest bleeding such as 304%, the letter thickness of 2.02mm. The mixing ratio of SPA in the coating film is increased to 2.5, 5, 7.5, SPA ratio of 7.5 has a bleeding ratio of 9% and letter thickness of 0.544mm. It showed the closest value to 0.5mm. According to the result, the optimal mixing ratio of binder, polymer coagulant, silica gel is 100:7.5:1.

Effect of Dispersion Method on Formation of Electroless Ni-CNT Coatings (분산법이 무전해 Ni-CNT 복합도금막 형성에 미치는 영향)

  • Bae, KyooSik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.51-55
    • /
    • 2014
  • Ni-CNT(Carbon Nanotubes) composite coating is often used for the surface treatment of mechanical/electronic devices to improve the properties of the Ni coating. For the Ni-CNT coating, the dispersion of CNT fibers is a critical process. In this study, ultrasonic treatment instead of the conventional ball milling was attempted as a dispersion method for the electroless Ni-CNT coating. SEM-EDX analysis was performed and contact angle, sheet resistance, and micro-hardness were measured. Results showed that the ultrasonic treatment was comparable to the ball milling, as a dispersion method, but the difference was negligible. However, combined ball milling and ultrasonic treatment(double treatment) showed much improved micro-hardness value, above 350Hv(close to the value obtained by the Ni-CNT electroplating). In addition, electroless Ni-CNT(double-treated) coatings formed on the thin Ni film deposited by the electroless plating(double coating) showed better mechanical properties. Thus, double treatment and double coating are suggested as an improved electroless Ni-CNT coating method.

Synthesis of Silica Aerogel and Thin Film Coating at Ambient (상입하에서의 실리카 에어로겔의 합성 및 박막코팅(I))

  • 양희선;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.188-194
    • /
    • 1997
  • Wet gel with surface modification by TMCS was redispersed in EtOH and redispersed silica sol for coat-ing was prepared. After spin coating of redispersed sol was conducted on silicon substrate, processes of drying(8$0^{\circ}C$) and heat treatment(>25$0^{\circ}C$) were, followed at ambient pressure. The influence of heat treat-ment of properties of film was observed, changing temperature at heat treatment. The optimum redisp-ersion condition for stable silica sol was wet gel:EtOH=1g:110$m\ell$ and the concentration and viscosity of redispersed silica sol with average particle size of 30nm were 0.11 M, 2.0-2.2 cP respectively. Crack-free thin film with the refractive index of 1.14 and thickness of 400 nm was obtained through drying at 8$0^{\circ}C$ and subsequent heat treatment at 45$0^{\circ}C$ for 2 hrs respectively after spin coating of 1500rpm, 10 times.

  • PDF

Organic Semiconducting Thin Films Fabricated by Using a Pre-metered Coating Method for Organic Thin Film Transistors (정량 주입(Pre-metered) 코팅 방식을 이용한 유기 트랜지스터 반도체 박막 제작 연구)

  • Cho, Chan-Youn;Jeon, Hong-Goo;Choi, Jin-Sung;Kim, Yun-Ki;Lim, Jong-Sun;Jung, J.;Cho, Song-Yun;Lee, Chang-Jin;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.531-536
    • /
    • 2012
  • We herein present results of flat and uniform polymer-blended small molecular semiconductor thin films. Which were produced for organic thin film transistors (OTFTs), using a simple pre-metered horizontal dipping process. The organic semiconducting thin films were composed of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-PEN) composite blended with a polymer binder of poly(${\alpha}$-methylstyrene) (PaMS). We show that the pre-metered horizontal-dip-coating(H-dip-coating) process allowed the critical control of the thickness of the blended TIPS-PEN:PaMs thin film. The fabricated OTFTs using the TIPS-PEN:PaMs films exhibited maximum field-effect mobility of $0.22\;cm^2\;V^{-1}\;s^{-1}$. These results demonstrated that H-dip-coated TIPS-PEN:PaMS films show considerable promise for the production of reliable, reproducible, and high-performance OTFTs.

Formation of Coating Film on Rice Surface during Cooking and Artificial Coating Method with Glutinous Rice Powder (밥짓기 과정중 피막(皮膜) 형성(形成) 형상(現象)과 찹쌀분(粉) 첨가(添加)에 의한 피막층(皮膜層)의 보강(補强))

  • Lee, Seung-Ju;Chun, Jae-Kun
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.241-247
    • /
    • 1986
  • The relationship between rice and the fluid during cooking was investigated to examine the factors affecting the quality of cooked rice and a new rice cooking method was proposed to improve the unpalatability of aged Milyang 23-long grain rice variety. The changes of heights of rice-bed and the fluid during cooking were measured with a laboratory cooking apparatus made of flat bottomed graduated glass cylinder. Around the boiling, a sudden disappearance of the fluid was observed and then thin film was formed on the rice grains. This film coating was fortified by the addition of 1-2%(w/w) of glutinous rice powder as a film forming agent. The artificial coating on the cooked rice of low quality remarkably improved the gloss, moisture content and shape and the extent of leaching of rice solid into the fluid was reduced with the treatment.

  • PDF

Preparation of Optically Anisotropic Film by Sunset Yellow Chromonic Liquid Crystal (Sunset Yellow 액정 색소를 이용한 광학적 이방성 필름 제조)

  • Kim, Byungchul;Chang, Eugene;Shin, Seunghan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2011
  • The aqueous solution of Sunset Yellow-FCF (SY-FCF) began to show schlieren texture at room temperature when its concentration reaches 25 wt%. A further increase of the concentration of SY-FCF to 28 wt% resulted in a perfect nematic liquid crystal phase. However, more than 30 wt% of SY-FCF in aqueous solution was required to make an optically anisotropic film simply by shear coating. In our study, concentration of SY-FCF solution, coating speed, drying temperature, and relative humidity were considered as coating parameters affecting the preparation of optically anisotropic thin films. From analysis of variance analysis (ANOVA), the solution concentration was revealed as a main factor affecting the film thickness. The drying temperature and solution concentration were main factors affecting the transmittance of parallel direction ($T_o$). Especially, SY-FCF aqueous solution with high concentration induced a better alignment of LC columns and produced highly oriented anisotropic films. In this study, optically anisotropic films prepared by 33 wt% of SY-FCF in aqueous solution showed 89.7~98.7% of degree of polarization.

Fabrication of Hydrophobic Anti-Reflection Coating Film by Using Sol-gel Method (Sol-gel 법을 이용한 내오염 반사방지 코팅막 제조)

  • Kim, Jung-Yup;Lee, Ji-Sun;Hwang, Jonghee;Lim, Tae-Young;Lee, Mi-Jai;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.689-693
    • /
    • 2014
  • Anti-reflection coating films have used to increase the transmittance of displays and enhance the efficiency of solar cells. Hydrophobic anti-reflection coating films were fabricated on a glass substrate by sol-gel method. To fabricate an anti-reflection film with a high transmittance, poly ethylene glycol (PEG) was added to tetraethyl orthosilicate (TEOS) solution. The content of PEG was changed from 1 to 4 wt% in order to control the morphology, thickness, and refractive index of the $SiO_2$ thin films. The reflectance and transmittance of both sides of the coated thin film fabricated with PEG 4 wt% solution were 0.3% and 99.4% at 500 nm wavelength. The refractive index and thickness of the thin film were n = 1.29 and d = 105 nm. Fluoro alkyl silane (FAS) was used for hydrophobic treatment on the surface of the anti-reflection thin film. The contact angle was increased from $13.2^{\circ}$ to $113.7^{\circ}$ after hydrophobic treatment.

Fabrication of anti-reflection thin film by using sol-gel hybrid solution (Sol-gel 하이브리드 용액을 이용한 반사방지막 제조)

  • Park, Jong-Guk;Lee, Ji-Sun;Lee, Mi-Jai;Lee, Young Jin;Jeon, Dae-Woo;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.220-224
    • /
    • 2016
  • Anti-reflection (AR) thin films were fabricated on a glass substrate by using an ultrasonic spray. Glycidoxypropyl trimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) were used to synthesize a sol-gel hybrid coating solution. The moving speed of spray nozzle was changed from 15~25 mm/s to control the coating thickness of AR thin film. As the moving speed of spray nozzle increased, the thickness of AR thin film decreased from 138 nm to 86 nm. When the AR thin film was fabricated by nozzle moving speed of 20 mm/s, the refractive index and thickness of AR thin film was measured to be 1.31 and 104 nm, respectively. The average reflectance and transmittance of AR thin film coating glass was measured to be 0.75 % and 94 %, respectively into the visible light range of 380~780 nm.

A Study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating (II); Effect on Oxidation and Corrosion REsistance of $CeO_2$ Stabilized Zirconia Thin Film (졸-겔 세라믹 코팅에 의한 스테인레스강의 내산화 및 내식성 향상에 관한 연구 (II);$CeO_2$ 안정화 지르코니아 박막의 내산화 및 내식성 효과)

  • 이재호;우일기;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • Ceria(CeO2) stabilized zirconia(CeSZ) sol was synthesized with zirconium n-butoxide Zr(OC4H9)4 and cerium nitrate hexahydrate Ce(NO3)3.6H2O as precursors and ethylacetoacetate(EAcAc) as a chelating agent under atmosphere. CeSZ films were deposited on AISI 304 stainless steel using the prepared polymeric sol by dipcoating and the coating characteristics were investigated by XRD, ellipsometry, scratch test and SEM. The CeSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$ and it was not converted into monoclinic phase up to 100$0^{\circ}C$ by the addition of 16mol% CeO2 as a stabilizer which could suppress phase transformation of zirconia. The CeSZ films were prepared by varying the EAcAc contents and the cncentration of CeSZ sol and measured the thickness and refractive index. From these results, it was found that the EAcAc contents and concentration of CeSZ coating sol evidently affect the densification of CeSZ film. The CeSZ film coated with 0.4M CeSZ sol and heat-treated at $600^{\circ}C$ for 10min had thickness of 50nm and 17% porosity. The CeSZ film on 304 stainless steel effectively acted as a protective layer against oxidation up to 80$0^{\circ}C$ and had superior corrosion resistance in 25% H2SO4 solution for 4.5 hrs.

  • PDF

Characteristic Evaluation of Anodic Film Depending on the Concentration of Sodium Silicate in the Electrolyte Anodized AZ31B Magnesium Alloy (전해액 중 Sodium silicate의 농도에 따라 양극 산화된 AZ31B 마그네슘 합금 양극 피막의 특성 평가)

  • Lee, Dong-Kil;Kim, Yong-Hwan;Park, Hyun;Jung, Uoo-Chang;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.109-115
    • /
    • 2009
  • Magnesium is one of the lightest metals, and magnesium alloys have excellent physical and mechanical properties such as high stiffness/weight ratios, good castability, good vibration and shock absorption. However their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To improve these defects, many techniques are developed. Micro arc oxidation(MAO) is a one of the surface treatments under anodic oxidation in which ceramic coating is directly formed on the surface of magnesium alloy. In this study, the characteristics of anodic film were examined after coating the AZ31B magnesium alloy through the MAO process. MAO was carried out in potassium hydroxide, potassium fluoride, and various concentration of sodium silicate in electrolyte. The morphology and chemical composition of the coating layer were characterized by SEM, XRD, EPMA and EDS. The hardness of anodic films was measured by micro-vickers hardness tester. As a result, the morphology and composition of anodic film were changed by concentration of sodium silicate. Thickness and Si composition of anodic film was increased with increasing concentration of sodium silicate in electrolyte. The hardness of anodic film was highly increased when the concentration of sodium silicate was above 40 g/l in electrolyte.