• Title/Summary/Keyword: coastal wetland

Search Result 129, Processing Time 0.035 seconds

Algal Flora of Hauido Tidal Flats in the Southwestern Coast of Korea (한국 남서해안 하의도 갯벌의 해조상)

  • Park, Chan Sun;Park, Kyung Yang;Hwang, Eun Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.193-199
    • /
    • 2012
  • We performed qualitative and quantitative surveys on the distribution of seaweed species and dominant species with their standing crop and temporal variations in Hauido tidal flats in order to understand the role of seaweeds in a coastal wetland ecological system that may be used for conservation and management of coastal wetland ecological system. A total of 9 species were found at 7 stations of the study area; 4 species of Chlorophyta (Ulva compressa, U. prolifera, U. pertusa and Ulothrix flacca), 3 species of Phaeophyta (Ectocarpus arctus, Scytosiphon lomentaria and Myelophycus simplex) and 2 species of Rhodophyta (Gracilaria verrucosa and Caulacanthus okamurae). Major dominant species were U. compressa, U. prolifera and U. pertusa (Chlorophyta), Scytosiphon lomentaria (Phaeophyta) and Gracilaria verrucosa (Rhodophyta). Standing crops of U. compressa and U. prolifera were $2.94{\sim}45.25g{\cdot}dw{\cdot}m^{-2}$ and $6.19{\sim}91.9g{\cdot}dw{\cdot}m^{-2}$, respectively, in spring. Seaweed habitat was characterized by textural differences that the percentage of coarse particles and organic material were a little higher in seaweed flourishing areas than in seaweed barren areas.

A Study on Identification and Distribution of the Village Wetland Inventory Based on GIS - Focused on Seocheon-gun Province, Chungnam, Korea - (GIS를 기반으로 한 농촌 마을습지 판별 및 분포 특성 연구 - 충남 서천군을 사례로 -)

  • Park, Miok
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • The purpose of this study is to construct a GIS / DB by grasping a small but ecologically valuable village wetland distribution, and to propose conservation management and wise use plan. The study area is Seocheon-gun, a typical farming village. Firstly, based on the digital topographical map (1:5,000), the Arc-GIS tool was used to identify the provisional(draft) village wetlands. In addition, for the management of village wetlands, wetlands with an area of more or less than $625m^2$ each were derived and according to ecological regions study area was classified into urban areas, inland areas and coastal areas. And finally, according to the wetland identifying indicators, the village wetlands were identified as the final village wetlands through indoor and field trips. The results of the study show that there are 570 village wetlands in Seocheon - gun province, which are 74 in urban areas, 220 in inland areas, and 276 in coastal areas. The case study for village wetland identification was conducted in one out of two urban areas (Seocheon - eup), two of four coastal areas (Biin - myeon and Seo - myeon), and three of seven inland areas (Masan - myeon, Hansan - myeon, and Sicho - myeon). The distribution of village wetlands was found mainly to be a village wetland with an area of less than $625m^2$. In addition, compared with inland areas, the discrimination rate of village wetlands in coastal areas and urban areas was relatively low, indicating that inland areas were still less disturbed, and land use in urban areas and coastal areas is changing rapidly. Especially, land with less awareness such as village wetlands is relatively easily damaged, and management strategy is urgent.

The Economic Valuation of Ecosystem Restoration in Suncheon Bay (순천만 생태복원에 따른 경제적 가치 평가)

  • Hwang, Minsup;Lee, Myung Kyoon;Jung, Tae Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.69-79
    • /
    • 2014
  • Coastal wetlands are among the most productive biomes in the Earth. The economic values include the direct use of a coastal wetland's ecosystem services, such as food, raw materials, recreation, and tourism. Other values comprise the indirect use of a coastal wetland's ecosystem services, such as carbon sequestration, waste-water treatment, and erosion prevention. In particular, Suncheon Bay is recently attracting attention as the most successful case of the preservation and restoration. This study applies Travel Cost Method (TCM) to estimate the economic value by drawing the demand curve for trips to Suncheon Bay. The TCM is an approach used for economic valuation of non-market goods and services. Based on the results of TCM, this study shows that the economic benefit from recreational uses of the site adds up to \174.7 billion per year. It is also significant in the sense that monetary information is suggested to help local policy makers evaluate the realistic values of coastal wetlands.

CO2 Respiration Characteristics with Physicochemical Properties of Soils at the Coastal Ecosystem in Suncheon Bay (순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Pil-Geun
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.217-227
    • /
    • 2010
  • This paper was studied $CO_2$ respiration rate with physicochemical properties of soils at wetland, paddy field and forest in Nongju-ri, Haeryong-myeon, Suncheon city, Jeollanam-do. Soil temperature and $CO_2$ respiration rate were measured at the field, and soil pH, moisture and soil organic carbon were analyzed in laboratory. Field monitoring was conducted at 6 points (W3, W7, W13, W17, W23, W27) for wetland, 3 points (P1, P2, P3) for paddy field and 3 points (F1, F2, F3) for forest in 10 January 2009. $CO_2$ concentrations in chamber were measured 352~382 ppm for wetland, 364~382 ppm for paddy field and 379~390 ppm for forest, and the average values were 370 ppm, 370 ppm and 385 ppm, respectively. $CO_2$ respiration rates of soils were measured $-73{\sim}44\;mg/m^2/hr$ for wetland, $-74{\sim}24\;mg/m^2/hr$ for paddy field and $-55{\sim}106\;mg/m^2/hr$ for forest, and the average values were $-8\;mg/m^2/hr$, $-25\;mg/m^2/hr$ and $38\;mg/m^2/hr$. $CO_2$ was uptake from air to soil in wetland and paddy field, but it was emission from soil to air in forest. $CO_2$ respiration rate function in uptake condition increased exponential and linear as soil temperature and soil organic carbon. But, it in emission condition decreased linear as soil temperature and soil organic carbon. $CO_2$ respiration rate function in wetland decreased linear as soil moisture, but its in paddy and forest increased linear as soil moisture. $CO_2$ respiration rate function in all sites increased linear as soil pH, and increasing rate at forest was highest.

Preliminary Phosphorous Removal Rate in a Natural-type Constructed Wetland for Stream Water Treatment (하천수정화 근자연형 인공습지의 초기 인 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.30-36
    • /
    • 2002
  • A 0.19 hectare natural-type wetland for stream water treatment demonstration was constructed and planted with cattails from April 2001 to May 2001. Part of its bottom surfaces adjacent to levees have a variety of slope of 1 : 4~1 : 15. Two small open water areas were installed, in which emergent plants could not grow. Removal of nutrients from stream waters was a major objective of the wetland. Waters of Sinyang Stream flowing into Kohung Estuarine Lake were pumped and funneled into the wetland. The lake had been formed by a salt marsh reclamation project and was located southern coastal region of Korean Peninsula. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged $120.4m^3/day$ and $112.1m^3/day$, respectively. Hydraulic retention time was about 3.1 days. Average total phosphorous concentration of influent and effluent was $0.19mg/{\ell}$ and $0.075mg/{\ell}$, respectively. Total phosphorous loading rate of inflow and outflow averaged $12.05mg\;m^{-2}\;day^{-1}$ and $4.44mg\;m^{-2}\;day^{-1}$, respectively. Average total phosphorous removal rate in the wetland was $7.61mg\;m^{-2}\;day^{-1}$. Seasonal changes of phosphorous retention rates were observed. The wetland acted as effective phosphorous sinks in the initial stage of the constructed wetland.

Sediment Toxicity of Industrialized Coastal Areas of Korea Using Bioluminescent Marine Bacteria

  • Choi, Min-Kyu;Kim, Seong-Gil;Yoon, Sang-Pil;Jung, Rae-Hong;Moon, Hyo-Bang;Yu, Jun;Choi, Hee-Gu
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.244-253
    • /
    • 2010
  • The quality of marine sediments from the industrialized coastal areas of Korea (Ulsan Bay, Masan Bay, and artificial Lake Shihwa) was investigated using a bacterial bioluminescence toxicity test. Sediment toxicity results were compared with the levels of chemical contamination (trace metals, organic wastewater markers, acid volatile sulfides, total organic carbon). Effective concentration 50% (EC50) of sediments ranged from 0.014 to 1.126 mg/mL, which is comparable to or lower than values in contaminated lakes, rivers, and marine sediments of other countries. Sediment reference index (SRI) ranged from 13 to 1044, based on the EC50 of the negative control sample. Mean average SRI values in Masan Bay and Lake Shihwa were approximately 8 and 9 times as high as that in Ulsan Bay, indicating higher sediment toxicity and greater contamination in the two former regions. Sediment toxicity were strongly associated with the concentrations of some chemicals, suggesting that this test may be useful for determining potential chemical contamination in sediments.

Distribution of Fish Species in Wetland Protected Areas in South Korea

  • Chu, Yeounsu;Yoon, Jungdo;Cho, Kwang-Jin;Kim, Mijeong;Lim, Jeongcheol;Lee, Changsu
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.42-52
    • /
    • 2021
  • In order to secure basic data on biodiversity for wetland conservation and management used the data from Wetland Protected Area surveys conducted in South Korea (2015-2019) to analyze the distribution of fish from a total of 15 orders, 45 families, 134 species, and 12,972 individuals. The predominant species identified were Zacco platypus (Temminck and Schlegel) (19.47%) and Zacco koreanus (Kim, Oh and Hosoya) (8.16%). Of all emergent species, 52.9% (n=71 species) were freshwater species, 26.9% (n=36) were brackish species, 3.0% (n=4) were migratory species, 27% (n=36) were marine species, and 9.0% (n=12) were riffle benthic species. Overall, 5.2% (n=7 species) were endangered species, 3.0% (n=4) were exotic species, and 23.1% (n=31) were Korean endemic species. The eight identified Wetland Protected Areas (WPA) were classified based on their habitat characteristics and on the analysis of their emergent fish communities, as estuarine (n=2), coastal dune (n=1), marsh (n=2), stream (n=2), and stream-marsh (n=1) types. The environmental factors revealed to have the greatest influence on the species diversity of emergent fish were maintenance and repair, installation of reservoirs, and construction of artificial wetlands around them. The present study offers basic information on the diversity of fish species in different Wetland Protected Area types that can be used to inform conservation and management decisions for WPA.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.