• Title/Summary/Keyword: coastal pier

Search Result 34, Processing Time 0.025 seconds

Simulation of Tidal Flow and Water Quality in Onsan Harbor System (온산 항만 시스템에서 조류와 수질 변화 시뮬레이션)

  • Kim, So-Yeon;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 1999
  • Tidal flow and water quality were simulated in this paper to assess environmental impact caused by pier construction projects in Onsan harbor system. The Surfacewater Modeling System (SMS) was applied to the Onsan harbor system, where coastal reclamation and dredging were planned to build the piers. A finite element mesh was constructed and refined to cover the complicated geometry of the Onsan harbor and the proposed reclamation area. The time variable change of tidal height at harbor inlet was given as an input condition to tidal simulation. The water quality simulation was based on the discharge rate of suspended solids at the reclamation area. The simulation results have shown reasonable agreements with real situations in both tidal flow and water quality. According to the proposed plan, tidal flow and water quality were predicted during and after the pier construction. The tidal simulation study showed that there would be no discernible change of tidal current in the harbor except for the dredged area. The water quality simulation, however, predicted that suspended solids would increase significantly near the reclaimed and dredged areas during construction.

  • PDF

Evaluation of Seismic Performance for Various Types of Pile Head of Landing Pier (잔교식 안벽에서 말뚝 두부형식에 따른 내진성능 평가)

  • Jang In-Sung;Kwon O-Soon;Park Woo-Sun;Jeong Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.70-79
    • /
    • 2005
  • Most of landing piers in Korea employ the combination of vertical piles and batter piles, which shows good efficiency in static lateral resistance but poor seismic performance. Many attempts have continuously been made to increase the seismic performance of batter piles with various aseismatic systems. In this study, new types of aseismatic system were developed by use of rubber and ball bearing, and shaking table tests and 3 dim. numerical analyses were performed in order to compare the seismic performance for various types of pile head. The test and numerical analysis results show the high seismic performance of newly proposed systems and the applicability off dim. numerical analysis considering the non-linear behaviour of rubber and ball bearing systems.

An Experimental Study on the Effects of Perforated Floating Structures and Submerged Plates for Wave Control and Motion Reduction of Pile-Moored Floating Piers (말뚝계류 부잔교의 파랑제어 및 동요저감을 위한 유공구조 부유체와 몰수판 효과에 관한 실험적 연구)

  • Chae-Won Kwon;Su-Young Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.3
    • /
    • pp.116-127
    • /
    • 2024
  • The floating pier is a representative type of floating structure installed along the coast, primarily used as a facility for berthing and mooring ships. Additionally, ongoing attempts have been made to utilize it for various purposes, such as wave control and wave energy conversion structures. In this study, we experimentally investigated the reflection and motion characteristics of a pile-moored floating pier, which allows heave and limited roll motion, with respect to the presence of perforated structures and the attachment of submerged plates. The hydraulic experiment results indicated that the reflection and motion characteristics of the pile-moored floating pier were significantly influenced by the presence and installation depth of the submerged plates, rather than the presence of perforated structures on the floating body. In particular, the installation of submerged plates increased the reflection coefficient in short-period waves and effectively reduced the heave and roll motions of the floating body.

Seismic Performance of Landing Pier with Batter Pile (경사말뚝이 있는 잔교식 안벽의 내진 성능 평가)

  • 권오순;장인성;박우선
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.92-99
    • /
    • 2002
  • 1995년 일본 고베지진 이후 우리나라에서도 지진에 대한 연구가 활발히 이루어지고 있으며, 현재 국내 여러 기간시설에 대한 내진안전성 평가와 내진설계가 실시되고 있다. 국내 기존 항만시설에 대해서도 내진 안정성 평가가 수행되고 있으며 현재계획ㆍ시공되고 있는 항만에서도 내진설계가 반영되고 있다. 중요한 항만시설물 중 하나인 잔교식 안벽은 연직말뚝과 경사말쪽을 조합하여 사용하고 있으나, 최근 내진설계에서 경사말뚝이 지진과 같은 동적 하중에 취약하다는 이유로 사용에 제한을 받고 있다. (중략)

  • PDF

Mechanism for Bank Erosion and Local Scouring in Estuary of the Hangang River

  • Lee, Samhee;Han, Hyeongjun;Choo, Jeongho
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2014
  • The levee and bridge pier in estuary of the Hangang River are exposed in a dangerous condition due to bank erosion and local scouring occurred since the summer season in 2011. At first, it is presumed that the high sandbar formed in river channel of the study area was an important element in the occurrence of bank erosion and local scouring. It can be presumed that the record-breaking depth of freezing due to cold wave for the long term during the winter season between 2010 and 2011 as well as the heavy intensive rainfall of 2011 had a decisive effect on the first damage of A section. The second damage of B section mainly occurred around the bridge pier constructed on the high water channel before it was washed away during the winter season between 2011 and 2012. It is considered that the second damage was caused by ice formation and ice floes.

Estimation of Seismic Fragility for Busan and Incheon Harbor Quay Walls (부산 및 인천항만 안벽구조물의 지진취약도 예측)

  • Kim, Young Jin;Kim, Dong Hyawn;Lee, Gee Nam;Park, Woo Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.412-421
    • /
    • 2013
  • Nowadays, small and medium-sized earthquakes occur frequently in the west coast of Korea. The earthquake induced damages on the harbor structure such as quay wall possibly make a severe impact on national economy. Therefore, not only a seismic design for the structures but warning system for seismic damage right after the occurrence of earthquake should be developed. In this study, seismic fragility analysis was performed to be given to earthquake damage prediction system for quay wall structures in Busan and Incheon harbor. Four types of structures such as pier-type, caisson type, counterfort type, block-type were analyzed and fragility curves of functional performance level and collapse prevention level based on displacement criteria were found. Regression analyses by using the results of the two ports were done for possible use in other port structures.

Pier-Scour Characteristics of the Marine Bridge with Ship Impact Protection - Incheon Bridge Case - (선박충돌방지공이 설치된 해상교량의 교각 세굴 특성 분석 - 인천대교를 대상으로 -)

  • Yeo, Woon-Kwang;Ji, Un;Kim, Chang-Sung;Lim, Jong-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.203-211
    • /
    • 2008
  • More recently, the massive marine bridges in a ship passage have been constructed on the sea. Therefore, the ship impact protection for the bridge-piers are installed to consider the possibility of vessel collision danger. Due to the ship impact protection, the pier-scour characteristics are changed in comparison with the condition without the ship impact protection (SIP). In this study, the physical modeling for the Incheon Sea-Crossing Bridge was performed to analyze the pier-scour characteristics with respect to the vessel collision protection. The rigid and movable bed tests were conducted to evaluate the flow pattern, scour depth, and scourhole with and without the ship impact protection. The experimental results for the maximum scour depth is increased 0.24 m in W1 pier at the same location and 2.4 m in W2+3+4 piers due to the SIP installation. Especially, the maximum scour depth in W2+3+4 piers was occurred around the SIP.

Scour Impact on the Horizontal Bearing Capacity of Pier-Type Dolphin Structures (잔교식 돌핀 구조물의 수평 지지력에 세굴이 미치는 영향 검토)

  • Tae Young Jeong;Su Won Kang;Kyu Won Kim;Jong Hwa Won;Chan Joo Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.138-145
    • /
    • 2023
  • A study using numerical analysis techniques was conducted to examine the scour effect of pier-type dolphin structures installed in the domestic marine environment, and the effect of scour on horizontal bearing capacity was examined. In this study, we designed the berthing structures, taking into account the environmental and ground conditions of the target maritime area, and after calculating the predicted scour area, stability evaluation was performed by removing the ground elements of the area. The increase in scour depth was found to induce a direct decrease in horizontal bearing capacity due to soil loss in contact with the foundation, establishing a relationship that increases horizontal displacement. However, in the foundation designed to withstand the design load by reflecting the safety rate, the increase in horizontal displacement formed by possible scour is not large, which did not have a dominant effect on the horizontal bearing capacity of the foundation. In the future, research is required to analyze the impact of each factor and formalize evaluation and design techniques to evaluate the scour safety of marine foundations and pier-type structures installed in various ground conditions and structural formats.