DOI QR코드

DOI QR Code

An Experimental Study on the Effects of Perforated Floating Structures and Submerged Plates for Wave Control and Motion Reduction of Pile-Moored Floating Piers

말뚝계류 부잔교의 파랑제어 및 동요저감을 위한 유공구조 부유체와 몰수판 효과에 관한 실험적 연구

  • Chae-Won Kwon (Dept. of Civil Engineering, National Korea Maritime and Ocean University) ;
  • Su-Young Lee (Dept. of Civil Engineering, National Korea Maritime and Ocean University) ;
  • Do-Sam Kim (Dept. of Civil Engineering, National Korea Maritime and Ocean University) ;
  • Kwang-Ho Lee (Dept. of Civil Engineering, Korea Maritime and Ocean University)
  • 권채원 (국립한국해양대학교 대학원 토목공학과) ;
  • 이수영 (국립한국해양대학교 대학원 토목공학과) ;
  • 김도삼 (국립한국해양대학교 토목공학과) ;
  • 이광호 (국립한국해양대학교 토목공학과)
  • Received : 2024.06.12
  • Accepted : 2024.06.25
  • Published : 2024.06.30

Abstract

The floating pier is a representative type of floating structure installed along the coast, primarily used as a facility for berthing and mooring ships. Additionally, ongoing attempts have been made to utilize it for various purposes, such as wave control and wave energy conversion structures. In this study, we experimentally investigated the reflection and motion characteristics of a pile-moored floating pier, which allows heave and limited roll motion, with respect to the presence of perforated structures and the attachment of submerged plates. The hydraulic experiment results indicated that the reflection and motion characteristics of the pile-moored floating pier were significantly influenced by the presence and installation depth of the submerged plates, rather than the presence of perforated structures on the floating body. In particular, the installation of submerged plates increased the reflection coefficient in short-period waves and effectively reduced the heave and roll motions of the floating body.

부잔교는 연안에 설치되는 대표적인 부유식 구조물로 선박의 접안 및 계류시설로 주로 활용되고 있으나, 파랑제어 및 파력발전 구조체와 같은 다양한 목적으로 활용하려는 시도가 계속되고 있다. 본 연구에서는 상하동요와 제한된 횡동요만을 허용하는 말뚝계류 부잔교를 대상으로 부유체의 유공구조 및 몰수판 부착에 따른 반사특성 및 동요특성을 실험적으로 검토하였다. 수리실험결과, 말뚝계류된 부잔교의 반사특성과 동요특성은 뷰유체의 유공구조 유무에 비해 몰수판의 설치 유무와 설치수심에 크게 의존함을 확인하였다. 특히, 몰수판의 설치는 단주기 파랑에서 반사계수를 증가시키고, 부유체의 상하동요 및 횡동요를 감소시키는 효과가 있었다.

Keywords

References

  1. Cho, I.H. (2002). Wave control performance of moored pontoon-type floating breakwater. Journal of Korean Society for Marine Environmental Engineering, 5(3), 35-44 (in Korean). 
  2. Cho, I.H. and Pyo, S.W. (2009). Analysis on motion responses and transmission coefficients of a moored floating breakwater in oblique incident waves. Journal of Korean Society of Ocean Engineering, 23(3), 6-13 (in Korean). 
  3. Chun, I., Choi, M., Shim, J. and Oh, B. (2002). Harbor tranquility analysis with the reflection-transmission boundary condition of floating breakwaters. Journal of Korean Society of Coastal and Ocean Engineers, 14(1), 76-85 (in Korean). 
  4. Elhanafi, A., Macfarlane, G., Fleming, A. and Leong, Z. (2017). Experimental and numerical investigations on the hydrodynamic performance of a floating-moored oscillating water column wave energy converter. Applied Energy, 205, 369-390.  https://doi.org/10.1016/j.apenergy.2017.07.138
  5. Falnes, J. (1999). Wave-energy conversion through relative motion between two single-mode oscillating bodies. Journal of Offshore Mechanics and Arctic Engineering, 121(1), 32-38.  https://doi.org/10.1115/1.2829552
  6. Gomes, R.P.F., Henriques, J.C.C., Gato, L.M.C. and Falcao, A.F.O. (2016). Wave power extraction of a heaving floating oscillating water column in a wave channel. Renewable Energy, 99, 1262-1275.  https://doi.org/10.1016/j.renene.2016.08.012
  7. He, F., Huang, A. and Lae, A.W.K. (2013). An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. Applied Energy, 106, 222-231.  https://doi.org/10.1016/j.apenergy.2013.01.013
  8. Jarlan, G.E. (1961). A perforated vertical wall breakwater. The Dock and Harbor Authority, 12(486), 394-398. 
  9. Jeong, W.M. and Pyun, C.K. (1991). On the motion of twodimensional floating breakwaters moored tautly in shallow water. Journal of Korean Society of Coastal and Ocean Engineers, 3(3), 137-151 (in Korean). 
  10. Kim, D. and Bae, Y.H. (2024). Multibody analysis of wave Energy converters and a floating platform in the time domain. Journal of Marine Science and Engineering, 12(2), 265. 
  11. Kim, D.S., Lee, K.H., Choi, N.H. and Yoon, H.M. (2004). A study of wave control by new type floating breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 16(1), 1-9 (in Korean). 
  12. Kim, D.S. and Yoon, H.M. (2002). Three-dimensional wave control and dynamic response of floating breakwater moored by piers. Journal of Korean Society of Coastal and Ocean Engineers, 14(3), 183-191 (in Korean). 
  13. Kim, I.C. and Park, K.C. (2019). Experimental study on hydraulic performance of perforated caisson breakwater with turning wave blocks. Journal of Ocean Engineering and Technology, 33(1), 61-67 (in Korean).  https://doi.org/10.26748/KSOE.2018.084
  14. Kim, J., Jeong, Y.J. and Kim, Y.T. (2024). Frequency-domain analysis for motion of floating structures with perforated wall. Journal of Korean Society of Coastal and Ocean Engineers, 36(1), 1-10 (in Korean).  https://doi.org/10.9765/KSCOE.2024.36.1.1
  15. Kim, S.J., Koo, W. and Shin, M.j. (2019). An experimental study on heave reduction of a floating body with various submerged-body areas. Journal of Korean Society for Marine Environment and Energy, 22(3), 133-141 (in Korean).  https://doi.org/10.7846/JKOSMEE.2019.22.3.133
  16. Lee, K.H., Bae, J.H., Kim, S.G. and Kim, D.S. (2017). Three-dimensional simulation of wave reflection and pressure acting on circular perforated caisson breakwater by OLAFOAM. Journal of Korean Society of Coastal and Ocean Engineers, 29(6), 286-304 (in Korean).  https://doi.org/10.9765/KSCOE.2017.29.6.286
  17. Mansard, E.P.D. and Funke E.R. (1980). The measurement of incident and reflected spectra using a least squares method. Proceedings of the 17th Coastal Engineering Conference, 1 (1980), pp. 154-172. 
  18. Masuda, Y. (1985). An experience of wave power generator through tests and improvement, in: D.V. Evans, A.F. de O. Falcao (Eds.). Hydrodynamics of Ocean Wave Energy Utilization Symposium, Portugal, Lisbon. 
  19. Nakamura, T., Kohno, T. and Uemura, M. (1999). Performace of a floating breakwater by the use of wave slamming loss. Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, France, 730-734. 
  20. Park, D.J., Kim, J.Y. and Kim, W.S. (2021). Strategic improvement of harbor floating pier facilities. Journal of Korea Port Economic Association, 37(3), 105-116 (in Korean).  https://doi.org/10.38121/kpea.2021.09.37.3.105
  21. Park, J.Y., Shin, S.H., Hong, K.Y. and Kim, S.H. (2011). A study on the wave response and efficiency of pendulum wave energy converter. Porc. of the 22nd ISOPE, Rhodes, Greece. 
  22. Rapaka, E.V., Natarajan, R. and Neelamani, S. (2004). Experimental investigation on the dynamic response of a moored wave energy device under regular sea waves. Ocean Engineering, 31, 725-743.  https://doi.org/10.1016/j.oceaneng.2003.09.001
  23. Shin, M.J., Koo, W., Kim, S.J., Heo, S.H. and Min, E.H. (2017). Experimental study on the reduction of vertical motion of floating body using floating-submerged bodies interaction. Journal of the Society of Naval Architects of Korea, 54(6), 485-491 (in Korean).  https://doi.org/10.3744/SNAK.2017.54.6.485
  24. Yoon, J.S., Han, S.J. and Cho, Y.S. (2011). Experimental study on functional improvement of porous floating breakwaters. Proceedings of the Korea Water Resources Association Conference, Daegu, Korea, 44-48 (in Korean). 
  25. Watanabe, E., Utsunomiya, T., Kuramoto, M., Ohta, H., Torii, T. and Hayashi, N. (2003). Wave response analysis of VLFS with an attached submerged plate. International Journal of Offshore and Polar Engineerings, 13(3), 190-197.