• Title/Summary/Keyword: coastal estuary

Search Result 277, Processing Time 0.027 seconds

Sediment Characteristics of the Beach and Subtidal Zone in Shindu Marine Protected Area (신두 해양생태계보호구역 해빈과 조하대의 퇴적물 특성)

  • Shin, Young Ho;Seo, Jong Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.6
    • /
    • pp.812-832
    • /
    • 2014
  • We analyzed physical and chemical properties of sediments from 20 subtidal points and 9 beach points to define sedimentary environment between summer and winter of Shindu Marine Protected Area. Means of particle size in summer were generally finer than winter's. There was distinctively spatial pattern that particle sizes became increasingly fine as west direction and apart from beach in summer, but this pattern was not shown in winter. Coarse sediments were prevailed in winter. To explain these patterns, we propose possible two causes which are spatially different water depth condition related with seasonal wave climate or fine sediment input from an estuary located in south of this area during summer rainy season. Contents of exchangeable cations of sediment in summer were shown $Na^+$>$Ca^{2+}$>$Mg^{2+}$>$K^+$ in order, but those of winter were shown $Na^+$>$Mg^{2+}{\fallingdotseq}Ca^{2+}$>$K^+$. Contents of $Na^+$, $Mg^{2+}$, and $K^+$ were related with contents of fine sediment and showed high correlation in each other. These relations were not shown between $Ca^{2+}$ and others. Our results show that there are spatio-temporal unique sedimentary environments between subtidal zone, beach, and dune near Shindu Marine Protected Area. Therefore, we should consider these spatio-temporal patterns for environmentally sound management of Shindu coastal system.

  • PDF

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) (해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용))

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.

Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary (소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석)

  • Choi, Nak Yong;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.390-399
    • /
    • 2012
  • This research observed the cross section current of 7 survey lines in Seokmo Channel of Gyeonggi bay with a lot of freshwater inflow and S-shaped for 13 hours during flood season and neap tide. We indicated the distribution of the current velocity by comprehending the speed and direction of the current velocity of each line during maximum flood, ebb tide and observed the distribution of salinity. Moreover, in order to understand what lateral momentum causes the lateral flow in each survey line, we practiced the momentum analysis through the observation data. As a result, the lateral baroclinic pressure gradient force and vertical friction of the Seokmo channel during neap tide were the strongest, and this is why the flow by the distribution of salinity and stratification most often occurs. In north of the Seokmo channel, where have wide intertidal and a lot of freshwater inflow, the secondary circulation is caused by balance of lateral baroclinic pressure gradient force and other forces, and the vertical friction was strong in the lines with small depth. On the other hand, in the southern part of the Seokmo channel where the water is deep and the waterway is curved, the advective acceleration and centrifugal force become stronger by the geographical causes during ebb and the influence of fresh water. Therefore, the lateral flow in the Seokmo channel was caused by the distribution of the momentum that differs by location, depth, curve, etc.

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

An Analysis of the Relationship between Inherent Optical Properties and Ocean Color Algorithms Around the Korean Waters (한반도 주변의 해수 고유광특성과 해색 알고리즘의 관계 분석)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.473-490
    • /
    • 2015
  • There are diverse sea areas within the coverage of GOCI which is observed around the Korea at one-hour intervals. It includes not only very clear ocean of East Sea, but also extremely turbid waters of the Yangtze River estuary. In this study, we analyzed the different optical characteristics of various sea areas using absorption coefficients of phytoplankton, Suspended Particulate Matter(SPM), Dissolved Organic Matter(DOM). Totally 959 sets of bio-optical and marine environmental data were obtained from 2009 to 2014 around the sea area of Korea. The East Sea, South Sea, East China Sea and offshore part of Yellow Sea showed similar pattern having high levels of contribution of phytoplankton and DOM. On the other hands, the coastal part of Mokpo and Gyeonggi Bay showed opposite pattern having high levels of contribution of SPM and DOM. As a result of the algorithm performance for chlorophyll-a(Chl-a) and SPM, Chl-a is mostly overestimated and SPM is mainly tended to be underestimated. Large amount of errors are induced by the SPM rather than the chl-a and DOM. These errors are primarily founded in the coastal waters having relatively high levels of $a_{SPM}$ contribution of more than 60%.

Outliers and Level Shift Detection of the Mean-sea Level, Extreme Highest and Lowest Tide Level Data (평균 해수면 및 최극조위 자료의 이상자료 및 기준고도 변화(Level Shift) 진단)

  • Lee, Gi-Seop;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.322-330
    • /
    • 2020
  • Modeling for outliers in time series was carried out using the MSL and extreme high, low tide levels (EHL, HLL) data set in the Busan and Mokpo stations. The time-series model is seasonal ARIMA model including the components of the AO (additive outliers) and LS (level shift). The optimal model was selected based on the AIC value and the model parameters were estimated using the 'tso' function (in 'tsoutliers' package of R). The main results by the model application, i.e.. outliers and level shift detections, are as follows. (1) The two AO are detected in the Busan monthly EHL data and the AO magnitudes were estimated to 65.5 cm (by typhoon MAEMI) and 29.5 cm (by typhoon SANBA), respectively. (2) The one level shift in 1983 is detected in Mokpo monthly MSL data, and the LS magnitude was estimated to 21.2 cm by the Youngsan River tidal estuary barrier construction. On the other hand, the RMS errors are computed about 1.95 cm (MSL), 5.11 cm (EHL), and 6.50 cm (ELL) in Busan station, and about 2.10 cm (MSL), 11.80 cm (EHL), and 9.14 cm (ELL) in Mokpo station, respectively.

Ingestion rate and grazing impact by the mixotrophic ciliate Mesodinium rubrum on natural populations of marine heterotrophic bacteria in the coastal waters of Korea

  • Seong, Kyeong Ah;Myung, Geumog;Jeong, Hae Jin;Yih, Wonho;Kim, Hyung Seop;Jo, Hyun Jung;Park, Jae Yeon;Yoo, Yeong Du
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2017
  • We explored feeding by the mixotrophic ciliate Mesodinium rubrum, heterotrophic nanoflagellates (HNFs), and small ciliates (<$30{\mu}m$ in cell length) on natural populations of heterotrophic bacteria in Masan Bay, Keum River Estuary, and in the coastal waters of the Saemankeum area, Korea when M. rubrum red tides occurred. We also measured ingestion rates of M. rubrum on cultured heterotrophic bacteria as a function of bacterial concentration in the laboratory. The ingestion rates of M. rubrum on natural populations of heterotrophic bacteria (2.3-16.8 bacteria $grazer^{-1}h^{-1}$) were comparable to or lower than those of co-occurring HNFs (10.7-41.7 bacteria $grazer^{-1}h^{-1}$), but much lower than those of co-occurring small ciliates (76.0-462.2 bacteria $grazer^{-1}h^{-1}$). However, the maximum grazing coefficient of M. rubrum ($0.245d^{-1}$) on natural populations of heterotrophic bacteria was much higher than that of small ciliates ($0.089d^{-1}}$), and slightly higher than that of HNFs ($0.204d^{-1}$). With increasing bacterial concentrations, ingestion rates of M. rubrum on cultured heterotrophic bacteria continuously increased, but became saturated at higher prey concentrations over $1-5{\times}10^6cells\;mL^{-1}$. The maximum ingestion rate of M. rubrum on cultured heterotrophic bacteria was 34.4 bacteria $grazer^{-1}h^{-1}$. Based on the present study, it is suggested that M. rubrum may be an important grazer of heterotrophic bacteria and sometimes have considerable grazing impact on natural populations of heterotrophic bacteria.

Characteristics of Mass Transport Depending on the Feature of Tidal Creek at Han River Estuary, Gyeong-gi Bay, South Korea (경기만 염하수로에서의 비정규 격자 수치모델링을 통한 조간대 조수로의 고려에 따른 Mass Transport 특성)

  • Kim, Minha;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.41-51
    • /
    • 2013
  • The tidal creek dependent mass transport characteristic in Gyeong-Gi Bay (west coast of Korea) was studied using field measured data and numerical model. Gyeong-Gi Bay consists of 3 main tidal channels and contains a well-developed vast tidal flat. This region is famous for its large tidal difference and strong current. We aim to study the effect of tidal creek in the tidal flat on the mass exchange between the estuary and the ocean. For numerical application, the application of unstructured grid feature is essential, since the tidal creek has complicated shape and form. For this purpose, the FVCOM is applied to the study area and simulation is performed for 2 different cases. In case A, geographic characteristics of the tidal creek is ignored in the numerical grid and in case B, the tidal creek are constructed using unstructured grid. And these 2 cases are compared with the field measured cross-channel mass transport data. The cross-channel mass transport at the Yeomha waterway mouth and Incheon harbor was measured in June, 9~10 (Spring tide) and 17~18 (Neap tide), 2009. CTD casting and ADCP cross-channel transect was conducted 13 times in one tidal cycle. The observation data analysis results showed that mass transport has characteristic of the ebb dominance Line 1 (Yeomha waterway mouth), on the other hand, a flood dominant characteristic is shown in Line 2 (Incheon harbor front). By comparing the numerical model (case A & B) with observation data, we found that the case B results show much better agreement with measurement data than case A. It is showed that the geographic feature of tidal creek should be considered in grid design of numerical model in order to understand the mass transport characteristics over large tidal flat area.

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.

Characteristic Distributions of Nutrients and Water Quality Parameters in the Vicinity of Mokpo Harbor after Freshwater Inputs (담수 유입에 따른 목포항 주변해역의 영양염 및 수질인자 분포 특성)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Choi, Yong Hyeon;Jeon, Seungryul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.617-636
    • /
    • 2015
  • The Mokpo coastal waters receive discharges from three artificial lakes(Youngsan, Youngam, Geumho) and other terrigenous freshwater inflows(streams, sewage treatment effluent, fresh groundwater), which exhibit very high concentrations of nutrients and/or organic matters. To understand spatial distributions of nutrients(DIN, DIP, DSi) and other water quality parameters(Chl-a, water temperature, salinity, DO, COD, SS), field surveys were conducted at 10 stations in the Mokpo harbor and adjacent estuaries on May, July, September, and November 2008 within 10 days following discharge events from artificial lakes. In this study, the freshwater flow rate influxed by the operation of sea dike sluice had significant influence on water qualities of the Mokpo coastal waters, although nutrient concentrations in other freshwater sources such as streams, sewage treatment effluent, and fresh groundwater were much higher. As a result of statistical analysis, DIN, COD, and Chl-a had a negative correlation with salinity. Therefore it was shown that discharge extents, time, and nutrients from the Youngsan lake were major impact factors dominating the spatial characteristics of nutrients and other water quality parameters in the Mokpo harbor and adjacent waters. However, despite non-discharge from the Youngsan Lake on September of this investigated period, it was observed that the nutrient addition was taking place in the lower layer of the estuary suggesting nutrient supply through different pathways. This result has emphasized the need to implement the combined assessment about the cumulative impacts on the Youngsan Estuary environment and ecosystem due to freshwater inputs derived from the artificial lakes as well as other terrigenous inflows, or benthic releases.