DOI QR코드

DOI QR Code

An Analysis of the Relationship between Inherent Optical Properties and Ocean Color Algorithms Around the Korean Waters

한반도 주변의 해수 고유광특성과 해색 알고리즘의 관계 분석

  • Min, Jee-Eun (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Ryu, Joo-Hyung (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Park, Young-Je (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
  • 민지은 (한국해양과학기술원 해양위성센터) ;
  • 유주형 (한국해양과학기술원 해양위성센터) ;
  • 박영제 (한국해양과학기술원 해양위성센터)
  • Received : 2015.09.03
  • Accepted : 2015.10.28
  • Published : 2015.10.31

Abstract

There are diverse sea areas within the coverage of GOCI which is observed around the Korea at one-hour intervals. It includes not only very clear ocean of East Sea, but also extremely turbid waters of the Yangtze River estuary. In this study, we analyzed the different optical characteristics of various sea areas using absorption coefficients of phytoplankton, Suspended Particulate Matter(SPM), Dissolved Organic Matter(DOM). Totally 959 sets of bio-optical and marine environmental data were obtained from 2009 to 2014 around the sea area of Korea. The East Sea, South Sea, East China Sea and offshore part of Yellow Sea showed similar pattern having high levels of contribution of phytoplankton and DOM. On the other hands, the coastal part of Mokpo and Gyeonggi Bay showed opposite pattern having high levels of contribution of SPM and DOM. As a result of the algorithm performance for chlorophyll-a(Chl-a) and SPM, Chl-a is mostly overestimated and SPM is mainly tended to be underestimated. Large amount of errors are induced by the SPM rather than the chl-a and DOM. These errors are primarily founded in the coastal waters having relatively high levels of $a_{SPM}$ contribution of more than 60%.

우리나라 주변을 한 시간 간격으로 관측하고 있는 GOCI의 관측영역 안에는 매우 맑은 대양의 성격을 띠는 동해부터 세계적인 큰 강인 양쯔강 하구의 극심하게 탁한 해역까지 매우 폭 넓은 해수 환경이 포함되어 있다. 따라서 본 연구에서는 대표적인 해수 구성 성분인 식물 플랑크톤, 부유물질, 용존유기물질의 흡광 특성자료를 이용하여 각 해역별 해수 환경의 차이를 상세하게 분석하였다. 이를 위하여 2009 ~ 2014년까지 6년 동안 한반도 주변 해역의 총 959개 정점에서 얻어진 해양 광학 자료 및 해양 환경 자료가 사용되었다. 그 결과 동해, 남해, 동중국해, 황해 외해역은 DOM과 식물 플랑크톤의 기여도가 높은 비슷한 분포 패턴을 나타냈고, 이와는 달리 목포 및 경기만 연안 해역은 부유물질과 용존유기물질의 기여도가 높은 분포 패턴을 보였다. 클로로필 및 부유물질 알고리즘의 정확도를 검증해 본 결과, 클로로필은 주로 과대 추정되고, 부유물질은 주로 과소 추정되는 경향을 보였다. 큰 오차의 경우 클로로필, 부유물질, 용존유기물질 중에서 부유물질에 의해 가장 많은 영향을 받았으며, $a_{SPM}$의 기여도가 60% 이상으로 높을 때 연안 해역에서 나타났다.

Keywords

References

  1. Binding, C.E., D.G. Bowers, and E.G. Mitchelson-Jacob, 2003. An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery, International Journal of Remote Sensing, 24(19): 3791-3806. https://doi.org/10.1080/0143116021000024131
  2. Bricaud, A. and D. Stramski, 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling area and the Sargasso Sea, Limnology and Oceanography, 35: 562-582. https://doi.org/10.4319/lo.1990.35.3.0562
  3. Carder, K.L., F.R. Chen, J.P. Cannizzaro, J.W. Campbell, and B.G. Mitchell, 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a, Advances in Space Research, 33: 1152-1159. https://doi.org/10.1016/S0273-1177(03)00365-X
  4. Choi, J.K., Y.J. Park, J.H. Ahn, H.S. Lim, J. Eom, and J.H. Ryu, 2012. GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity, Journal of Geophysical Research, 117: C9.
  5. Choi, J.K., J.E. Min, J.H. Noh, T.H. Han, S. Yoon, Y.J. Park, J.E. Moon, J.H. Ahn, S.M. Ahn, and J.H. Park, 2014. Harmful algal bloom (HAB) in the East Sea identified by the Geostationary Ocean Color Imager (GOCI), Harmful Algae, 39: 295-302. https://doi.org/10.1016/j.hal.2014.08.010
  6. Choi, J.Y., 1993. Seasonal variations of suspended matters in the Keum estuary and its adjacent coastal area, Journal of Oceanological Society of Korea, 28(4): 272-280 (In Korean with English abstract).
  7. Choi, J.Y. and Y.A. Park, 1998. Southward Transport of Suspended Sediments during Summer Season in the Coastal Zone off Tae-An Peninsula, West Coast of Korea, Journal of the Korean Society of Oceanography, 3(1): 45-52 (In Korean with English abstract).
  8. Cleveland, J.S. and A.D. Weidemann, 1993. Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters, Limnology and Oceanography, 38: 1321-1327. https://doi.org/10.4319/lo.1993.38.6.1321
  9. Dall'Olmo, G., A.A. Gitelson, D.C. Rundquist, B. Leavitt, T. Barrow, and J.C. Holz, 2005. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and nearinfrared bands, Remote Sensing of Environment, 96: 176-187. https://doi.org/10.1016/j.rse.2005.02.007
  10. Devred, E., C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, 2005. A semi-analytic seasonal algorhtinm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data, Indian Journal of Marine Sciences, 34(4): 356-367.
  11. Doxaran, D., J.M. Froidefond, S. Lavender, and P. Castaing, 2002. Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations, Remote Sensing of Environment, 81: 149-161. https://doi.org/10.1016/S0034-4257(01)00341-8
  12. D'Sa, E.J., R.L. Miller, and B.A. McKee, 2007. Suspended particulate matter dynamics in coastal waters from ocean color: Application to the northern Gulf of Mexico, Geophysical Research Letters, 34, L23.
  13. Froidefond, J.M., P. Castaing, and R. Prud'homme, 1999. Monitoring suspended particulate matter Fluxes and patterns with the AVHRR/NOAA-11 satellite: application to the Bay of Biscay, Deep-Sea Research Part II, 46: 2029-2055. https://doi.org/10.1016/S0967-0645(99)00054-5
  14. Garcia, V.M.T., S. Signorini, C.A.E. Garcia, and C.R. McClain, 2006. Empirical and semi-analytical chlorophyll algorithms in the south-western Atlantic coastal region ($25-40^{\circ}$S and $60-45^{\circ}$w International Journal of Remote Sensing, 27(8): 1539-1562). https://doi.org/10.1080/01431160500382857
  15. Gitelson, A.A., J.F. Schalles, and C.M. Hladik, 2007. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study, Remote Sensing of Environment, 109: 464-472. https://doi.org/10.1016/j.rse.2007.01.016
  16. Gitelson, A.A., G. Dall'Olmo, W. Moses, D.C. Rundquist, T. Barrow, T.R. Fisher, D. Gurlin, and J. Holz, 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation, Remote Sensing of Environment, 112: 3582-3593. https://doi.org/10.1016/j.rse.2008.04.015
  17. Gitelson, A.A., D. Gurlin, W.J. Moses, and T. Barrow, 2009. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters, Environmental Research Letters, 4(4): 045003. https://doi.org/10.1088/1748-9326/4/4/045003
  18. Gordon, H.R. and A. Morel, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery. a review, Lecture Notes on Coastal and Estuarine Studies, R.T. Barber, N.K. Mooers, M.J. Bowman, and B. Zeitzschel (Eds.), Springer-Verlag, New York.
  19. IOCCG, 2000. Remote sensing of ocean colour in coastal, and other optically-complex waters, Reports of the International Ocean-Colour Coordinating Group, No. 3. IOCCG, Dartmouth, Canada.
  20. Jeffrey, S.W. and G.F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochemie und Physiologie der Pflanzen, 167: 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  21. Jeong, J.C. and S.J. Yoo, 2000. The validation of chlorophyll-a band ratio algorithm of coastal area using SeaWiFS wavelength, Journal of the Korean Society of Remote Sensing, 16(1): 37-45 (In Korean with English abstract).
  22. Kahru, M. and B.G. Mitchell, 1998. Spectral reflectance and absorption of a massive red tide off Southern California, Journal of Geophysical Research, 103: 21601-21609. https://doi.org/10.1029/98JC01945
  23. Kirk, J.T.O., 2011. Light and photosynthesis in aquatic ecosystems, 3rd ed. Cambridge University Press, Bambridge CB28RU UK.
  24. Lee, H.J. and T.S. Chu, 2001. Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan mud belt, Journal of Sedimentary Research, 71(1): 144-154. https://doi.org/10.1306/040700710144
  25. Mao, Z., J. Chen, D. Pan, B. Tao, and Q. Zhu, 2012. A regional remote sensing algorithm for total suspended matter in the East China Sea, Remote Sensing of Environment, 124: 819-831. https://doi.org/10.1016/j.rse.2012.06.014
  26. Miller, R.L. and B.A. McKee, 2004. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, Remote Sensing of Environment, 93: 259-266. https://doi.org/10.1016/j.rse.2004.07.012
  27. Miller, R.L., C.E. Del Castillo, and B.A. McKee, 2005. Remote sensing of coastal aquatic environments- Technologies, Techniques and Applications, Remote Sensing and Digital Image, vol. 7, Springer, New York.
  28. Min J.E., J.K. Choi, Y.J. Park, and J.H. Ryu, 2013. Retrieval of suspended sediment concetnration in the coastal waters of Yellow Sea from Geostationary Ocean Color Imager (GOCI), Proc. of International Symposium on Remote Sensing, Chiba, Japan, May 15-17, vol. 1, pp. 809-812.
  29. Mitchell, B.G. and D.A. Kiefer, 1988. Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton, Deep-Sea Research I, 35: 639-663. https://doi.org/10.1016/0198-0149(88)90024-6
  30. Mitchell, B.G., 1990. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT), Proc. of international conference on Ocean Optics X, Florida, USA, April 16-18, pp. 137-148.
  31. Mitchell, B.G., M. Kahru, J. Wieland, and M. Stramska, 2003. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples, Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV, Chapter 4: 39-64.
  32. Mobley, C.D., 1994. Light and water: Radiative transfer in natural waters, Academic press, CD edition.
  33. Moon, J.E., Y.H. Ahn, J.H. Ryu, and P. Shanmugam, 2010. Development of ocean environmental algorithms for Geostationary ocean color imager (GOCI), Korean Journal of Remote Sensing, 26(2): 189-207 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.2.189
  34. Moon, J.E., Y.J. Park, J.H. Ryu, J.K. Choi, J.H. Ahn, J.E. Min, Y.B. Son, S.J. Lee, H.J. Han, and Y.H. Ahn, 2012. Initial validation of GOCI water products against in situ data collected around Korean Penensula for 2010-2011, Ocean Science Journal, 47(3): 261-277. https://doi.org/10.1007/s12601-012-0027-1
  35. Moore, L.R., R. Goericke, and S.W. Chisholm, 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties, Marine Ecology Progress Series, 116: 259-275. https://doi.org/10.3354/meps116259
  36. Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color, Limnology and Oceanography, 22: 709-722. https://doi.org/10.4319/lo.1977.22.4.0709
  37. Nelson, N.B., D.A. Siegel, and A.F. Michaels, 1998. Seasonal dynamics of colored dissolved material in the Sargasso Sea, Deep-Sea Research, 45: 931-957. https://doi.org/10.1016/S0967-0637(97)00106-4
  38. Novo, E.M.M., J.D. Hanson, and P.J. Curran, 1989. The effect of sediment type on the relationship between reflectance and suspended sediment concentration, International Journal of Remote Sensing, 10: 1283-1289. https://doi.org/10.1080/01431168908903967
  39. Oh, J.K., 1995. Sedimentation processes of the suspended sediments in Yumha channel of the Han River estuary, Korea, 16(1): 20-29 (In Korean with English abstract).
  40. O'Reilly, J.E., S. Maritorena, B.G. Mitchell, D.A. Siegel, D.L. Carder, S.A. Garver, M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithms for SeaWiFS, Journal of Geophysical Research, 103(C11): 24937-24953. https://doi.org/10.1029/98JC02160
  41. O'Reilly, J.E., S. Maritorena, M. O'Brien, D. Siegel, D. Toole, D. Menzies, R. Smith, J. Mueller, B.G. Mitchell, and M. Kahru, 2000. SeaWiFS postlaunch calibration and validation analyses, part 3. NASA Tech. Memo 206892(11).
  42. Park, Y.A., S.C. Kim, and J.H. Choi, 1984. Distribution and transportation of fine-grained sediments on the inner-continental shelf off the Kuem River Estuary, Korea, Journal of the Geological Society of Korea, 20(2): 154-168 (In Korean with English abstract).
  43. Jang, S.J. and M.O. Park, 2015. Evaluation of grinding effects in the extraction of photosynthetic pigments for HPLC anlaysis, Journal of the Korean Society of Oceanography, 20(2): 71-77 (In Korean with English abstract).
  44. Prieur, L. and S. Sathyendranath, 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials, Limnology and Oceanography, 26(4): 671-689. https://doi.org/10.4319/lo.1981.26.4.0671
  45. Ritchie, R. J., 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents, Photosynthesis Research, 89: 27-41. https://doi.org/10.1007/s11120-006-9065-9
  46. Roesler C.S., 1998. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique, Limnology Oceanography, 43(7): 1649-1660. https://doi.org/10.4319/lo.1998.43.7.1649
  47. Ruddick, K.G., H.J. Gons, M. Rijkeboer, and G. Tilstone, 2001. Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties, Applied Optics, 40(21): 3575-3585. https://doi.org/10.1364/AO.40.003575
  48. Ryu, J.H., J.E. Min, and H. Yang, 2015. Regional seas characteristics of bio-optical algorithm in t he Yellow Sea, Proc. of 4th China-Korea workshop on oceanic Monitoring and Development of Prediction System of Radionuclides for Nuclear Safety, Qingdao, China, May 11-12, vol. 1, p. 1.
  49. Shen, F., W. Verhoef, Y. Zhou, M.S. Salama, and X. Liu, 2010a. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in Changjiang (Yangtze) Estuary Using MERIS Data, Estuaries and Coasts, 33: 1420-1429. https://doi.org/10.1007/s12237-010-9313-2
  50. Shen, F., Y.X. Zhou, D.J. Li, W.J. Zhu, and M.S. Salama, 2010. Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary, International Journal of Remote Sensing, 31(17-18): 4635-4650. https://doi.org/10.1080/01431161.2010.485216
  51. Siswanto, E., J. Tang, H. Yamaguchi, Y.H. Ahn, J. Ishizaka, S. Yoo, S.W. Kim, Y. Kiyomoto, K. Yamada. C. Chiang, and H. Kawamura, 2011. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas, Journal of Oceanography, 67: 627-650. https://doi.org/10.1007/s10872-011-0062-z
  52. Son, Y.B., Y.H. Kang, and J.H. Ryu, 2012. Monitoring red tide in South Sea of Korea (SSK) using the Geostationary Ocean Color Imager (GOCI), Korean Journal of Remote Sensing, 28(5); 531-548 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.5.6
  53. Suh, Y.S., L.H. Jang, N.K. Lee, and B.K. Kim, 2002. Development of the regional algorithms to quantify chlorophyll a and suspended solid in the Korean Waters using ocean color, Journal of Korean Fisheries Society, 35(3): 207-215 (In Korean with English abstract).
  54. Tassan, S., 1994. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters, Applied Optics, 33(12): 2369-2378. https://doi.org/10.1364/AO.33.002369
  55. Tassan, S. and G.M. Ferrari, 1995. An alternative approach to absorption measurements of aquatic particles retained on filters, Limnology and Oceanography, 40: 1358-1368. https://doi.org/10.4319/lo.1995.40.8.1358
  56. Tassan, S., 1997. A numerical model for the detection of sediment concentration in stratified river plumes using Thematic Mapper data, International Journal of Remote Sensing, 18(12): 2699-2705. https://doi.org/10.1080/014311697217567
  57. Topliss, B.J., 1986. Spectral variations in upwelling radiant intensity in turbid coastal waters, Estuarine, Coastal and Shelf Science, 22: 395-414. https://doi.org/10.1016/0272-7714(86)90064-8
  58. Yoon, H.J., K.W. Nam, H.G. Cho, and H.K. Beun, 2004. Study on monitoring and prediction for the red tide occurrence in the middle coastal area in the South Sea of Korea II. The relationship between the red tide occurrence and the oceanographic factors, Journal of Korea Institute of Information and Communication Engineering, 8(4): 938-945 (In Korean with English abstract).
  59. Zhang, M., J. Tang, Q. Dong, Q.T. Song, and J. Ding, 2010. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery, Remote Sensing of Environment, 114: 392-403. https://doi.org/10.1016/j.rse.2009.09.016

Cited by

  1. 위성영상을 활용한 한국 남해의 광학적 특성 연구 : 2013년 8월 발생한 적조 사례를 중심으로 vol.11, pp.7, 2015, https://doi.org/10.13067/jkiecs.2016.11.7.723
  2. GOCI를 활용한 한반도 주변해역 적조 감시 체계 연구 vol.33, pp.2, 2017, https://doi.org/10.7780/kjrs.2017.33.2.9
  3. 연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구 vol.36, pp.2, 2015, https://doi.org/10.7780/kjrs.2020.36.2.2.7
  4. Regional classification of total suspended matter in coastal areas of South Korea vol.254, pp.None, 2015, https://doi.org/10.1016/j.ecss.2021.107339