DOI QR코드

DOI QR Code

Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary

소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석

  • Choi, Nak Yong (Department of Oceanography, College of Natural Science, Inha University) ;
  • Woo, Seung-Buhm (Department of Oceanography, College of Natural Science, Inha University)
  • Received : 2012.10.22
  • Accepted : 2012.12.21
  • Published : 2012.12.31

Abstract

This research observed the cross section current of 7 survey lines in Seokmo Channel of Gyeonggi bay with a lot of freshwater inflow and S-shaped for 13 hours during flood season and neap tide. We indicated the distribution of the current velocity by comprehending the speed and direction of the current velocity of each line during maximum flood, ebb tide and observed the distribution of salinity. Moreover, in order to understand what lateral momentum causes the lateral flow in each survey line, we practiced the momentum analysis through the observation data. As a result, the lateral baroclinic pressure gradient force and vertical friction of the Seokmo channel during neap tide were the strongest, and this is why the flow by the distribution of salinity and stratification most often occurs. In north of the Seokmo channel, where have wide intertidal and a lot of freshwater inflow, the secondary circulation is caused by balance of lateral baroclinic pressure gradient force and other forces, and the vertical friction was strong in the lines with small depth. On the other hand, in the southern part of the Seokmo channel where the water is deep and the waterway is curved, the advective acceleration and centrifugal force become stronger by the geographical causes during ebb and the influence of fresh water. Therefore, the lateral flow in the Seokmo channel was caused by the distribution of the momentum that differs by location, depth, curve, etc.

본 연구에서는 지속적인 담수유입이 존재하고 S자의 수로형태를 가진 경기만 석모수로에서 소조기 홍수시 13시간 동안 7개의 정선에서 단면유속 및 염분을 관측하였다. 각 단면의 최강 창조와 낙조시의 유속 크기와 방향을 파악하였고, 단면 내의 유속 분포 및 염분구조를 분석하였다. 또한 정선 별로 나타나는 횡 방향 흐름이 어떠한 운동량에 의해 지배되는지 파악하고자 횡 방향의 운동량 분석을 수행하였다. 운동량 분석에서는 석모수로의 S자 형태의 영향을 고려하기 위해서 원심력을 고려하였다. 분석 결과 소조기 홍수시 석모수로는 횡 방향 압력 경도력과 수직적 마찰력이 가장 우세하기 때문에 염분 분포와 성층에 의한 흐름이 주로 나타났다. 수로의 특성은 크게 북단과 남단으로 나누어 볼 수 있는데 상대적으로 조간대가 넓게 형성되고 담수의 영향이 큰 석모수로 북단의 4개 정선중에서 수심이 깊은 정선에서는 횡 방향 압력 경도력이 우세하지만 수직적으로 크기가 다르며, 수심이 낮은 정선에서는 수직 마찰항이 우세하였다. 이와는 달리 수심이 깊고 수로의 굴곡이 심한 석모수로 남단에서는 낙조시 지형학적 원인과 담수의 영향에 따라 이류 가속항과 원심력이 강해지게 된다. 이와 같은 결과를 종합할 때, 석모수로는 위치와 수심, 수로의 굴곡 등에 따라 운동량 분포가 각기 달리 나타나며 이러한 영향으로 인해 횡 방향 흐름 특성이 발생했음을 알 수 있다.

Keywords

References

  1. 이동환, 윤병일, 김종욱, 구본호, 우승범 (2012). 단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사. 한국해안.해양공학회, 24(1). https://doi.org/10.9765/KSCOE.2012.24.1.016
  2. 최낙용, 윤병일, 김종욱, 송진일, 임은표, 우승범 (2012). 대, 소 조기시 한강하구 석모수로에서 단면 잔차류와 성층간의 관계 연구. 한국해안.해양공학회, 24(3).
  3. Buijsman, M. C. and Ridderinkhof H. (2008). Variability of secondary currents in a weakly stratified tidal inlet with low curvature. Continental Shelf Research, 28, 1711-1723. https://doi.org/10.1016/j.csr.2008.04.001
  4. Csanady, G. T. (1975). Lateral momentum flux in boundary currents. Journal of Physical Oceanography 5, 705-717. https://doi.org/10.1175/1520-0485(1975)005<0705:LMFIBC>2.0.CO;2
  5. Chant, R. J. and Wilson, R. E. (1997). Secondary circulation in a highly stratified estuary, J. Geophys. Res., 102, 23,207-23,215. https://doi.org/10.1029/97JC00685
  6. Chant, R. J. (2002). Secondary circulation in a region of flow curvature: Relationship with tidal forcing and river discharge. J. Geophys. Res., 107(C9), 3131. https://doi.org/10.1029/2001JC001082
  7. Fischer, H. B. (1973). Longitudinal Dispersion and Turbulent Mixing in Open-Channel Flow. Annual Review of Fluid Mechanics 5, 59-78. https://doi.org/10.1146/annurev.fl.05.010173.000423
  8. Fischer, H. ., List, E. J., Koh, H. C. Y., Imberger, J. and Brooks, N. A. (1979). Mixing in inland and coastal waters. Academic' Press, 483 pp.
  9. Geyer, W. R. (1993). Three-dimensional tidal flow around headlands. J. Geophys. Res., 98, 955-966. https://doi.org/10.1029/92JC02270
  10. Joyce, T. M. (1989). On In Situ "Calibration" of Shipboard ADCPs. J. Atmos. Oceanic Technol., 6, 169-172. https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2
  11. Kalkwijk, J. P. T. and De Vriend, H. J. (1980). Computation of the flow in shallow river bends. Journal of Hydraulic Research 18, 327-342. https://doi.org/10.1080/00221688009499539
  12. Kalkwijk, J. P. T. and Booij, R. (1986). Adaptation of secondary flow in a nearly-horizontal flow. J. Hydraul. Res., 24, 19-37. https://doi.org/10.1080/00221688609499330
  13. Kim, C. S., Lim, H. S. and Kim, S. J. (2009). Residual flow and its implication to macro-tidal flats in Kyunggi Bay estuary of Korea. Journal of Coastal Research, Special Issue 56.
  14. Kim, Y. H. and Voulgaris, G. (2008). Lateral Circulation and Suspended Sediment Transport in a Curved Estuarine Channel, Winyah Bay, South Carolina, USA. Journal of Geophysical Research, Oceans, 113.
  15. Lacy, J. R. and Monismith, S. G. (2001). Secondary currents in a curved, stratified, estuarine channel. J. Geophys. Res., 106, 31,283-31,302. https://doi.org/10.1029/2000JC000606
  16. Lacy, J. R., Stacey, M. T., Burau, J. R. and Monismith, S. G. (2003). Interaction of lateral baroclinic forcing and turbulence in an estuary. J. Geophys. Res., 108(C3), 3089. https://doi.org/10.1029/2002JC001392
  17. Lerczak, J. A. and Geyer, W. R. (2004), Modeling the lateral circulation in straight, stratified estuaries. J. Phys. Oceanogr., 34, 1410-1428. https://doi.org/10.1175/1520-0485(2004)034<1410:MTLCIS>2.0.CO;2
  18. Li, C. Y. and O'Donnell, J. (1997). Tidally driven residual circulation in shallow estuaries with lateral depth variation. J. Geophys. Res., 102, 27,915-27,929. https://doi.org/10.1029/97JC02330
  19. Park, K., Oh, J. H., Kim, H. S. and Im, H. H. (2002). Case study: Mass transport mechanism in Kyunggi Bay around Han River Mouth, Korea. J. Hydraulic Eng, 128(3), 257-267. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(257)
  20. Preisendorfer, R. W. and Mobley, C. D. (1988). Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425.
  21. Ralston, D. K. and Stacey, M. T. (2005). Longitudinal dispersion and lateral irculation in the intertidal zone. J. Geophys. Res., 110 (C7), C07015. https://doi.org/10.1029/2005JC002888
  22. Pacanowski, R. C. and Philander, S. G. H. (1981). Parameterization of vertical Mixing in numerical model of Tropical Oceans. Journal of Physical Oceanography 11, 1443-1451. https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
  23. Seim, H. E. and Gregg, M. C. (1997). The importance of aspiration and channel curvature in producing strong vertical mixing over a sill. J. Geophys. Res., 102, 3451-3472. https://doi.org/10.1029/96JC03415
  24. Valle-Levinson, A. and Atkinson, L. (1999). Spatial Gradients in the Flow Over an Estuarine Channel. Estuaries 22, 179-193. https://doi.org/10.2307/1352975
  25. Valle-Levinson, A., Wong, K. C. and Lwiza, M. M. (2000). Fortnightly variability in the transverse dynamics of a coastal plain estuary, J. Geophys.Res., 105, 3413-3424. https://doi.org/10.1029/1999JC900307
  26. Webb, B. M., King, J. N., Tutak, B. and Valle-Levinson, A. (2007). Flow Structure at a Trifurcation near a North Florida inlet. Continental Shelf Research, 27, 1528-1547. https://doi.org/10.1016/j.csr.2007.01.021