Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.3.8

Ingestion rate and grazing impact by the mixotrophic ciliate Mesodinium rubrum on natural populations of marine heterotrophic bacteria in the coastal waters of Korea  

Seong, Kyeong Ah (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Myung, Geumog (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Yih, Wonho (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Kim, Hyung Seop (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Jo, Hyun Jung (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Park, Jae Yeon (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology)
Yoo, Yeong Du (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Publication Information
ALGAE / v.32, no.1, 2017 , pp. 47-55 More about this Journal
Abstract
We explored feeding by the mixotrophic ciliate Mesodinium rubrum, heterotrophic nanoflagellates (HNFs), and small ciliates (<$30{\mu}m$ in cell length) on natural populations of heterotrophic bacteria in Masan Bay, Keum River Estuary, and in the coastal waters of the Saemankeum area, Korea when M. rubrum red tides occurred. We also measured ingestion rates of M. rubrum on cultured heterotrophic bacteria as a function of bacterial concentration in the laboratory. The ingestion rates of M. rubrum on natural populations of heterotrophic bacteria (2.3-16.8 bacteria $grazer^{-1}h^{-1}$) were comparable to or lower than those of co-occurring HNFs (10.7-41.7 bacteria $grazer^{-1}h^{-1}$), but much lower than those of co-occurring small ciliates (76.0-462.2 bacteria $grazer^{-1}h^{-1}$). However, the maximum grazing coefficient of M. rubrum ($0.245d^{-1}$) on natural populations of heterotrophic bacteria was much higher than that of small ciliates ($0.089d^{-1}}$), and slightly higher than that of HNFs ($0.204d^{-1}$). With increasing bacterial concentrations, ingestion rates of M. rubrum on cultured heterotrophic bacteria continuously increased, but became saturated at higher prey concentrations over $1-5{\times}10^6cells\;mL^{-1}$. The maximum ingestion rate of M. rubrum on cultured heterotrophic bacteria was 34.4 bacteria $grazer^{-1}h^{-1}$. Based on the present study, it is suggested that M. rubrum may be an important grazer of heterotrophic bacteria and sometimes have considerable grazing impact on natural populations of heterotrophic bacteria.
Keywords
bacterivory; grazing; Mesodinium; protist; red tide;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189.   DOI
2 Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H. & Song, J. Y. 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol. 55:271-288.   DOI
3 Jimenez, R. & Intrigo, P. 1987. Observation blooms of Mesodinium rubrum in the upwelling area of Ecuador. Oceanologica Acta, Supplementum 1987. In Proceedings of International Symposium on Equatorial Vertical Motion, Gauthier-Villars, Paris, pp. 145-154.
4 Kat, M. 1984. "Red" oysters (Ostrea edulis L.) caused by Mesodinium rubrum in Lake Grevelingen. Aquaculture 38:375-377.   DOI
5 Kim, G. H., Han, J. H., Kim, B., Han, J. W., Nam, S. W., Shin, W., Park, J. W. & Yih, W. 2016. Cryptophyte gene regulation in the kleptoplastidic, karyokleptic ciliate Mesodinium rubrum. Harmful Algae 52:23-33.   DOI
6 Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163.   DOI
7 Lee, S. & Fuhrman, J. A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53:1298-1303.
8 Lee, S. H. 1993. Measurement of carbon and nitrogen biomass and biovolume from naturally derived marine bacterioplankton. In Kemp, P. F., Sherr, B. F., Sherr, E. B. & Cole, J. J. (Eds.) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 319-325.
9 Lindholm, T. 1985. Mesodinium rubrum: a unique photosynthetic ciliate. Adv. Aquat. Microbiol. 3:1-48.
10 Sherr, B. F., Sherr, E. B. & Fallon, R. D. 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53:958-965.
11 Norland, S. 1993. The relationship between biomass and volume of bacteria. In Kemp, P. F., Sherr, B. F., Sherr, E. B. & Cole, J. J. (Eds.) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 303-307.
12 Lohmann, H. 1908. Untersuchung zur Feststellung des vollstandigen Gehaltes des Meeres an Plankton. 10:129-370.
13 Myung, G., Kim, H. S., Jang, K. G., Park, J. W. & Yih, W. 2007. Importance of the mixotrophic ciliate Myrionecta rubra in marine ecosystems. The Sea J. Korean Soc. Oceanogr. 12:178-185 (in Korean).
14 Myung, G., Yih, W., Kim, H. S., Park, J. S. & Cho, B. C. 2006. Ingestion of bacterial cells by the marine photosynthetic ciliate Myrionecta rubra. Aquat. Microb. Ecol. 44:175- 180.   DOI
15 Packard, T. T., Blasco, D. & Barber, R. T. 1978. Mesodinium rubrum in the Baja California upwelling system. In Boje, R. & Tomczak, M. (Eds.) Upwelling Ecosystems. Springer Verlag, Berlin, pp. 73-89.
16 Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97.   DOI
17 Porter, K. G. & Feig, Y. S. 1980. The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol. Oceanogr. 25:943-948.   DOI
18 Porter, K. G., Sherr, E. B., Sherr, B. F., Pace, M. & Sanders, R. W. 1985. Protozoa in planktonic food webs. J. Protozool. 32:409-415.   DOI
19 Posch, T., Simek, K., Vrba, J., Pernthaler, J., Nedoma, J., Sattler, B., Sonntag, B. & Psenner, R. 1999. Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquat. Microb. Ecol. 18:235-246.   DOI
20 Sherr, E. & Sherr, B. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33:1225- 1227.   DOI
21 Welch, P. S. 1948. Limnological methods. Blaikston Co., Philadelphia, PA, 381 pp.
22 Simon, M. & Azam, F. 1989. Protein content and proteins synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51:201-213.   DOI
23 Smith, W. O. Jr. & Barber, R. T. 1979. A carbon budget for the autotrophic ciliate Mesodinium rubrum. J. Phycol. 15:27-33.   DOI
24 Taylor, F. J. R., Blackbourn, D. J. & Blackbourn, J. 1971. The red-water ciliate Mesodinium rubrum and its "incomplete symbionts"; a review including new ultrastructural observations. J. Fish. Res. Board Can. 28:391-407.   DOI
25 Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. 2004. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aqut. Microb. Ecol. 36:165-170.   DOI
26 Yih, W., Kim, H. S., Myung, G., Park, J. W., Yoo, Y. D. & Jeong, H. J. 2013. The red-tide ciliate Mesodinium rubrum in Korean coastal waters. Harmful Algae 30(Suppl.1):S53-S61.   DOI
27 Boenigk, J. & Novarino, G. 2004. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34:181-192.   DOI
28 Yoo, Y. D., Seong, K. A., Myung, G., Kim, H. S., Jeong, H. J., Palenik, B. & Yih, W. 2015. Ingestion of the unicellular cyanobacterium Synechococcus by the mixotrophic red tide ciliate Mesodinium rubrum. Algae 30:281-290.   DOI
29 Andersen, R. J., Wolfe, M. S. & Faulkner, D. J. 1974. Autotoxic antibiotic production by a marine Chromobacterium. Mar. Biol. 27:281-285.   DOI
30 Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. & Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-263.   DOI
31 Carver, C. E., Mallet, A. L., Warnock, R. & Douglas, D. 1996. Red-colored digestive glands in cultured mussels and scallops: the implication of Mesodinium rubrum. J. Shellfish Res. 15:191-201.
32 Cole, J. J., Findlay, S. & Pace, M. L. 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43:1-10.   DOI
33 Epstein, S. S. 1997. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb. Ecol. 34:188-198.   DOI
34 Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9:35-42.   DOI
35 Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815.   DOI
36 Hansen, P. J., Moldrup, M., Tarangkoon, W., Garcia-Cuetos, L. & Moestrup, O. 2012. Direct evidence for symbiont sequestration in the marine red tide ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 66:63-75.   DOI