• Title/Summary/Keyword: coastal area of East Sea

Search Result 340, Processing Time 0.032 seconds

Temporal and spatial Analysis of Sea Surface Temperature and Thermal Fronts in the Korean Seas by Satellite data

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.696-700
    • /
    • 2004
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of harmonic analysis, distributions of the mean SST were $10~25^{\circ}C,$ and generally SST decreased as latitude increased. SST increased in the order as following; the South Sea $(20\~23^{\circ}C),$ the East Sea $(17\~19^{\circ}C)$, and the West $Sea(13\~16^{\circ}C).$ Annual amplitudes and phases were $4\~11^{\circ}C,\;210\~240^{\circ}$ and high values were shown as following; the West Sea $(A1,\;9\~11^{\circ}C),$ the Northern East Sea $(A5,\;8\~9^{\circ}C),$ the Southern East Sea $(A4,\;6\~8^{\circ}C),$ the South Sea $(A3,\;6\~7^{\circ}C),$ the East China Sea $(A2,\;4\~7^{\circ}C)$ and phases; $A3\;(238\~242^{\circ}),\;A4\;(235\~240^{\circ}),\;A5\;(225\~235^{\circ}),\;Al\;(220\~230^{\circ}),\;A2\;(210\~235^{\circ}),$ respectively, Both of them were related inversely except the area A2, therefore the rest areas were affected by seasonal variations. TF were detected by Soble Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) based on the Cold Water Mass (low SST and salinity Subartic Water), resulting from the North Korea Cold Current (NKCC) and the East Sea Proper Cold Water in the middle and low layer, and the Warm Water Mass (high SST and salinity Subtropical Water), resulting from the Tsushima Warm Current (TWC) in area A4 and 5, the Kuroshio Front (KF) based on the Kuroshio Current (KC) and shelf waters in the East China Sea (ESC) in A2, and the South Sea Coastal Front (SSCF) based on the South Sea Coastal Water (SSCW) and TWC in A3. Also, the Tidal Front was weakly appeared in AI. TF located in steep slope of submarine topography. Annual amplitudes and phases were bounded in the same place, and these results should be considered to influence of seasonal variations.

  • PDF

Introduction of Coastal Area Management Program in Other Countries (연안역 비점오염관리 외국사례 조사)

  • Yu, Jiang-Hua;Yi, Qitao;Han, Bong-Yun;Kim, Yeon-Seok;Kim, Young-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.358-362
    • /
    • 2009
  • The coastal zone is the transitional area between land and sea. It plays an important role in the land-sea ecosystem. Unfortunately, most of the world's coastal areas are polluted due to the human being activities. Pollution and development are changing coastal habitats, and feeding and nursery areas are being destroyed, reducing fish and wildlife populations. The pollution in coastal areas is becoming a global environmental problem, more and more attention has been paid to coastal areas. America passed the Coastal Zone Management Act (CZMA) in 1972, and from then, CZMA outlined and conducted the National Coastal Zone Management Program and the National Estuarine Research Reserve System which including 34 projects. And England established "the Crouch & Roach Estuary Project" in 2003, and "South East Coastal and Marine Project" was started in 2007 in responding to the non-point pollutants challenge.

  • PDF

Review of the Functional Properties and Spatial Distribution of Coastal Sand Dunes in South Korea (우리나라 해안사구 분포 현황과 기능특성에 관한 고찰)

  • Yoon, Han-Sam;Park, So-Young;Yoo, Chang-Ill
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.2
    • /
    • pp.180-194
    • /
    • 2010
  • Coastal sand dunes are dynamic and fragile buffer zones of sand and vegetation where the following three characteristics can be found: large quantities of sand, persistent wind capable of moving sand, and suitable locations for sand to accumulate. The functional properties of coastal sand dunes include the roles in sand storage, underground freshwater storage, coastal defense, and ecological environment space, among others. Recently, however, the integrity of coastal dune systems has been threatened by development, including sand extraction for the construction industry, military usage, conversion to golf courses, the building of seawalls and breakwaters, and recreational facility development. In this paper, we examined the development mechanisms and structural/format types of coastal sand dunes, as well as their functions and value from the perspective of coastal engineering based on reviews of previous researches and a case study of a small coastal sand dune in the Nakdong river estuary. Existing data indicate that there are a total of 133 coastal sand dunes in South Korea, 43 distributed on the East Sea coast (32 in the Gangwon area, and 11 in Gyeongsangbuk-do), 60 on the West Sea coast (4 in Incheon and Gyeonggi-do, 42 in Ghungcheongnam-do, 9 in Jellabuk-do, and 5 in Jellanam-do), and 30 on the South Sea coast (16 in Jellanam-do, 2 in Gyeongsangnam-do, and 12 in Jeju).

The Oceanic Condition of the Tsushima Warm Current Region in the Southern Part of the East Sea (Sea of Japan) in June, 1996.

  • Lee, Chung-Il;Cho, Kyu-Dae;Yun, Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • Oceanic conditions of the Tsushima Warm Current (TWC) region in the southern area of the East Sea (Japan Sea) are examined using data obtained from a CREAMS (Circulation Research if the East Asian Marginal Seas) cruise in June 1996. In 1990s, a lower temperature appears in 1996 and in this period, two branches of the TWC exist and the first branch of the TWC flows inshore of the Japanese coastal region compared to that in the other years, especially in the shallower water layer at depth less than about 200 m. The TWC cored with the higher salinity (>34.6 psu) is clearly observed over the continental shelf in the Japanese coastal region and offshore and identified by geostrophic calculation. Intrusion of the TWC into the East Sea through the Korea Strait (the Tsushima Strait) makes the density structure in the water column change and the water mass in the TWC region is unstable based on Brunt­Vaisala frequency.

  • PDF

Assesment of pCO2 in the Yellow and East China Sea Using an Earth System Model (지구시스템모형을 이용한 황동중국해 이산화탄소분압 분포 특성 평가)

  • Park, Young-Gyu;Choi, Sang-Hwa;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.447-455
    • /
    • 2011
  • Using results from an earth system model, the distribution of partial pressure of $CO_2$ ($pCO_2$) in surface seawater over the East China Sea is investigated. In this area $pCO_2$ shows minimum along the edge of the continental break along the path of the Taiwan-Tsushima Current System. Apparently modelled chlorophyll is also great along the current but the maximum of the chlorophyll and the minimum of $pCO_2$ do not coincide suggesting that the primary production is not the main cause of the $pCO_2$ minimum. As we move toward the Yellow Sea from the Kuroshio area the temperature decreases so that the $pCO_2$ becomes smaller. If we move further toward the Yellow Sea beyond the Taiwan-Tsushima Current System, alkalinity starts to drop substantially to intensify $pCO_2$ while overcoming the effect of decreasing temperature and salinity. Thus $pCO_2$ minimum occurs along the Taiwan-Tsushima Current System. Of course, the primary production lower $pCO_2$ during spring when it is high but the effect is local. Near the Yangtze river mouth and northeastern corner of the Yellow Sea the fresh water input is large enough and dissolved inorganic carbon (DIC) becomes low enough so that $pCO_2$ becomes lower again.

A Numerical Simulation of 1983 East Sea Tsunami (1983년(年) 동해(東海)쓰나미의 산정(算定))

  • Choi, Byung Ho;Lee, Ho Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.207-219
    • /
    • 1993
  • Tsunamis along the east coast of Korea accompanying the 1983 East Sea central region earthquake is hindcasted with numerical models for tsunami propagation and inundation. Both linear and nonlinear models were used to compute propagation and elevation of tsunami waves on the coastal area of Korea. For the mesh refinement, grid system was divided into two sub-regions in Korean coastal area with final 10m grid resolution at interior area where serious inundation was observed. Calculated tsunami height distribution showed a general agreement with coastal observation. With interior detailed mesh system at mid-east coast region, the inundatin at the port of Imwon were qualitatively well reproduced by inundation and runup model.

  • PDF

Climatological Variability of Satellite-derived Sea Surface Temperature and Chlorophyll in the South Sea of Korea and East China Sea (남해와 동중국해에서 위성으로 추정된 표층수온 및 클로로필의 장기 변화)

  • Son, Young-Baek;Ryu, Joo-Hyung;Noh, Jae-Hoon;Ju, Se-Jong;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.201-218
    • /
    • 2012
  • The purpose of this study is to investigate climatological variations from the sea surface temperature (SST), chlorophyll-a concentration (Chl-a), and phytoplankton size class (PSC), using NOAA AVHRR, SeaWiFS, and MODIS data in the South Sea of Korea (SSK) and East China Sea (ECS). 26-year monthly SST and 13-year monthly Chl-a and PSC data, separated by whole and nine-different areas, were used to understand seasonal and inter-annual variations. SST and Chl-a clearly showed seasonal variations: higher SST and Chl-a were observed during the summer and spring, and lower values occurred during the winter and summer. The annual and monthly SST over 26 years increased by $0.2{\sim}1.0^{\circ}C$. The annual and monthly Chl-a concentration over 13 years decreased by $0.2{\sim}1.1mg/m^3$. To determine more detailed spatial and temporal variations, we used the combined data with monthly SST, Chl-a, and PSC. Between 1998 and 2010, the inter-annual trend of Chl-a decreased, with decreasing micro- and nano-size plankton, and increasing pico-size plankton. In regional analysis, the west region of the study area was spatially and temporally correlated with the area dominated by decreasing micro-size plankton; while the east region was less sensitive to coastal and land effects, and was dominated by increasing pico-size plankton. This phenomenon is better related to one or more forcing factors: the increased stratification of ocean driven by changes occurring in spatial variations of the SST caused limited contributions of nutrients and changed marine ecosystems in the study area.

Catch status of the giant pacific octopus, Enterocotpus dofleini, by drift line fishery in the central coast of the East Sea, Korea (동해 중부연안에 서식하는 대문어(Enteroctopus dofleini) 흘림낚시의 어획실태에 관한 연구)

  • Young il, SEO;Soo Jeong, LEE; Jae-Hyeong, YANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.310-316
    • /
    • 2022
  • Giant pacific octopus, Enteroctopus dofleini, is a large mollusk distributed in the East Sea of Korea. In this study, the catch status of giant pacific octopus by drift line fishery and the effect of sea temperature on fishing ground were investigated in Goseong-gun, Gangwon-do, which is the central coast of the East Sea. The average catch of giant pacific octopus in Gangwon-do was 1,570 tons over the past ten years, and it accounted for 21% in 2008 and 44% in 2021 compared to the total catch in the East Sea during the same period. Such data indicates that the catch in Gangwon-do has recently increased. In this study area, giant pacific octopus weighing 1.1-5.0 kg dominated accounting for 56% of the total individuals, and followed by those weighing 1 kg or less. However, the ratio of catch of giant pacific octopus over 5.1 kg tended to increase in 2021, which is thought to be related to the sea temperature that affected the fishing ground. The main depth of fishing ground was from 21 m to 50 m in this area and fishing grounds were widely distributed throughout the season except summer. Fishing ground was formed with the conditions of bottom sea temperature under 10℃ and was diminished by moving of giant pacific octopus to deeper depth with conditions of bottom sea temperature over 18℃.

Inhabit Features of a Brown Alga Undaria peterseniana in Coastal Area of Ulleung Island (울릉도 연안산 해조류 넓미역 Undaria peterseniana의 서식 특성)

  • YOON, SUNG JIN
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.3
    • /
    • pp.747-756
    • /
    • 2015
  • Brown alga Undaria peterseniana has been interested in the commercial scale aquaculture for warm water species development in southern coastal area of Korea. However, this species was classified an endangered species caused by a decrease in habitat and natural population. In this study, inhabit characteristics of U. peterseniana was investigated in their natural habitat of Ulleung Island, Korea. The U. peterseniana population was occurred dense patches at 20~30m depth. Total length of the alga reached 1.0~2.0m and the largest width ranged 10.0~35.0cm during the study. In 2013, habitats of this species increased two sites compared with the previous year and their distribution extended to low depth (10m) of coastal area. In long-term data, seawater temperature revealed a continuous increment by strong going north of East Korea Warm Current or Ulleung Warm Eddy turning around the coast of Ulleung Island. It suggested that habitat extension of U. peterseniana may be caused by suitable settlement condition and increase of warm water around the coastal area. Current studies of this species may be continuously required in the possibility of fisheries resources as aquaculture species and index species of increment of water temperature at the fixed monitoring site in East Sea. This is the first study to research ecological feature U. peterseniana population at the natural habitat of Ulleung Island.

A Study on Change of Sea Water Quality due to the Development Plan of Ilgwang Harbour (일광항의 항만개발에 따른 수질변화에 관한 연구)

  • 이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.303-312
    • /
    • 1998
  • It is necessary to quantitatively asses the influence of tidal currents to analysis the coastal current patterns before or after constructing offshore structures like as breakwaters. This assesment can be made through the use of simulation models designed to reproduce the water movements of the area. And it is very important to predict a phenomenon of pollutant dispersion in the area. In this study, in order to predict the changes of sea water quality for the port development plan, Ilgwang harbour, located at the east coast of Pusan, the numerical computations were carried out. The flow patterns were investigated before and after the development of the harbour bay and coastal area connected on it. The computational models are an extension of earlier work on the flow which used the ADI Method (Alternating Direction Implicit Method) in appling to Osaka Bay by KANEKO et al. The transport of pollutant constituents depends upon the currental characteristics of the water-transporting medium. In the currental flow model, water velocities and water levels are computed throughout the regions of it. These value are then used in the mass-balance equation to obtain the pollutant-constituent transport. As a result of this research, the present water quality of Ilgwang harbour and the coastal areas connected on it was proved out some good condition. The changes of sea water quality due to the port development plan of the Ilgwang habour bay and the coastal area were not large compared with the present condition, but it will be likely able to get worse by increasing the semi-enclosed areas in the harbour bay. In order to improve the water quality of the area after development, the method to activate tidal exchange in the area can be needed, as a mitigation technique.

  • PDF