• Title/Summary/Keyword: coast

Search Result 5,116, Processing Time 0.025 seconds

A Study of Storm Surges of the Seas in North eastern asia I. Analysis of Yearly Maximum Surge (東北 아시아 海域의 暴風海溢 硏究 I. 暴風海溢 年別 極値 分析)

  • 이진경;오임상
    • 한국해양학회지
    • /
    • v.29 no.1
    • /
    • pp.28-41
    • /
    • 1994
  • The hourly sea level data are analyzed in order to find the general characteristics of the storm surges at the coasts of Korea, Japan and Russia. the surges are calculated by removing the predicted tides from the observed sea level at 44 tidal stations. In korea, positive and negative surges of the west coast are larger than those of the south and east coasts. The magnitudes of negative surges are larger than those of positive surges at the west of Japan. The surges of the northern Russian coast are relatively larger than those of the southern west coast of japan. The yearly maximum positive surges at the west coast of Korea, are found to be caused by extratropical storm, but the maximum positive surges at the south or the east coast of Korea are due to the summer typhoon. Mostly the yearly maximum negative surges occur at the west coast of Korea (particularly Inchon), and they are caused by extratropical storm.

  • PDF

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

Estimation of Storm Surges on the Coast of Busan (부산연안에서 폭풍해일고의 추정)

  • Hur Dong-Soo;Yeom Gyeong-Seon;Kim Ji-Min;Kim Do-Sam;Bae Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.37-44
    • /
    • 2006
  • Each year, the coast of Busan is badly damaged, due to storm surge. The damages are greatly dependent upon the local peculiarities of the region in which the storm surge occurs. So, in order to prevent/reduce recurrence of the disaster due to the storm surge, it is very important to investigate the fluctuation characteristics of the storm surge height, related to the local peculiarities at each coastal area in which the occurrence of the disaster is expected. In this paper, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast of Busan Typhoons of Sarah (5914), Thelma (8705) and Maemi (0314), which caused terrible damage to the coastal areas alongthe coast of Busan in the past, were taken as an object of the storm surge simulations. Moreover, the storm surge due to virtual typhoons, which were combined with the characteristics of each proposed typhoon (Maemi, Sarah, Thelma), compared to the travel routes of other typhoons, was predicted. As expected, the results revealed that the storm surge heights are enhanced at the coastal region with the concavity like a long-shaped bay. Also, the storm surge heights, due to each typhoon, were compared and discussed at major points along the coast of Busan, related to the local peculiarities, as well as the characteristics and the travel route of the typhoon.

Storm Surge Characteristics According to the Local Peculiarity in Gyeongnam Coast (경남연안의 지역특성에 따른 폭풍해일고의 변동)

  • Hur Dong-Soo;Yeom Gyeong-Seon;Kim Ji-Min;Kim Do-Sam;Bae Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.45-53
    • /
    • 2006
  • Each year, the south coast of Korea is badly damaged from storm surge. The damages are greatly dependent upon the local peculiarities of the region where the storm surge occurs. So, in order to prevent/reduce recurrence of the disaster, it is very important to investigate the fluctuation characteristics of the storm surge height, related to the local peculiarities at each coastal area where occurrence of the disaster is expected. In this paper, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the Gyeongnam coast (southeast coast of Korea). Typhoons of Sarah (5914), Thelma (8705) and Maemi (0314), which caused terrible damage to the coastal area in the southeast coast of Korea in the past, were used forstorm surge simulations. Moreover, the storm surge due to virtual typhoons, which were combined the characteristics of each proposed typhoons (Maemi, Sarah, Thelma)with the travel route of other typhoon, was predicted. As expected, the results revealed that the storm surge heights are enhanced at the coastal regions with the concavity like a long-shaped bay. Also, the storm surge heights, due to each typhoon, were compared and discussed at major points along the Gyeongnam coast, related to the local peculiarities, as well as the characteristics and the travel route of typhoon.

The cold water mass along the southeast and east coasts of Korea in 2016-2017

  • Choo, Hyo-Sang
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.243-259
    • /
    • 2021
  • The spatial and temporal behaviors and fluctuations of the cold water that appeared in the South East Sea and the East Sea coast from 2016 to 2017 were investigated. The water temperature drop was large in the east coast from April to June and the southeast coast from July to September, and the temperature drop period was longer in the southeast coast. The water temperature fluctuated sensitively to the wind direction, and it gradually decreased in the southwest wind but rose as if jumping in the northeast wind. Wind stress and surface water temperature had an inverse correlation, which was larger in Bukhang-Idukseo, and decreased toward the north of Guryongpo. The cold water appeared mainly in Geojedo-Pohang after 1 to 2 days when the southwest wind was strong, but when the wind became weak, it shrank to the Idukseo (Ulgi-Gampo) and extended into the open sea in a tongue shape. Cold water was distributed only in Samcheok-Toseong in mid-May, Idukseo-Guryongpo and Hupo-Jukbyeon-Samcheok from late May to mid-July, and Bukhang-Idukseo in August-September. The intensity of cold water was greatest in mid-August, and the center of cold water descended from the east coast to the southeast coast from spring to summer. The water temperature fluctuation was dominant at the periods of 1 d and 7-21 d. In wavelet spectrum analysis of water temperature and wind, wind speed increase-water temperature decrease showed phase difference of 12 h in 2 d, 18 h in 3 d, 1.5 d in 4-8 d, and 2-3 d in 8-24 d period. The correlation between the two parameters was large in Geojedo and Namhang, Bukhang-Idukseo, Guryongpo-Jukbyeon, and Samcheok-Toseong. Monitoring stations with high correlation in all periods were generally parallel to the monsoon direction.

Basic Data Advancement for Improving the Accuracy of Estimating the Damage Cost Caused by Strong Winds on the Korean Peninsula during Typhoon Periods (한반도 태풍시기 강풍유발 피해액 산정의 정확도 향상을 위한 기초자료의 고도화)

  • Yun, Hee-Seong;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.87-97
    • /
    • 2022
  • In this study, type analysis was conducted along with the advancement of basic data to calculate the maximum damage caused by strong winds during the typhoon period. The result of the damage by region showed that in 2012, the difference in damage was clearly distinguished as the region was classified in detail. In addition, the result of the annual damage in 2011 was strong on the west coast, and in 2016, the damage to the southeast coast was significant. In 2012, the 3-second gust was relatively stronger on the west and southeast coasts than in 2011, and the winds blew stronger along the southeast coast in 2016. Monthly damage data showed that the damage to the west coast was high in August, and the damage to the southeast coast was high in October from 2002 to 2019. The 3-second gust showed the result of wide expansion throughout the southern coast of the Korean Peninsula in October. As a result, the damage differs for type bacause the intensities and paths of typhoons vary depending on their characteristics, the 3-second gust blows differently by region based on regional characteristics, and the sale price is considered in metropolitan cities.

IMPROVING RELIABILITY OF BRIDGE DETERIORATION MODEL USING GENERATED MISSING CONDITION RATINGS

  • Jung Baeg Son;Jaeho Lee;Michael Blumenstein;Yew-Chaye Loo;Hong Guan;Kriengsak Panuwatwanich
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.700-706
    • /
    • 2009
  • Bridges are vital components of any road network which demand crucial and timely decision-making for Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support system (DSS), have been developed since the early 1990's to assist in the management of a large bridge network. Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the prediction accuracy of bridge deterioration models.

  • PDF

Analysis of Surface Water Temperature Fluctuation and Empirical Orthogonal Function in Cheonsu Bay, Korea

  • Hyo-Sang Choo;Jin-Young Lee;Kyeung-Ho Han;Dong-Sun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.255-269
    • /
    • 2023
  • Surface water temperature of a bay (from the south to the north) increases in spring and summer, but decreases in autumn and winter. Due to shallow water depth, freshwater outflow, and weak current, the water temperature in the central to northern part of the bay is greatly affected by the land coast and air temperature, with large fluctuations. Water temperature variations are large in the north-east coast of the bay, but small in the south-west coast. The difference between water temperature and air temperature is greater in winter and in the south-central part of the bay than that in the north to the eastern coast of the bay where sea dykes are located. As the bay goes from south to north, the range of water temperature fluctuation and the phase show increases. When fresh water is released from the sea dike, the surrounding water temperature decreases and then rises, or rises and then falls. The first mode of empirical orthogonal function (EOF) represents seasonal variation of water temperature. The second mode represents the variability of water temperature gradient in east-west and north-south directions of the bay. In the first mode, the maximum and the minimum are shown in autumn and summer, respectively, consistent with seasonal distribution of surface water temperature variance. In the second mode, phases of the coast of Seosan~Boryeong and the east coast of Anmyeon Island are opposite to each other, bordering the center of the deep bay. Periodic fluctuation of the first mode time coefficient dominates in the one-day and half-day cycle. Its daily fluctuation pattern is similar to air temperature variation. Sea conditions and topographical characteristics excluding air temperature are factors contributing to the variation of the second mode time coefficient.

A Study on Korea Coast Guard Intelligence Centered on legal and Institutional comparison to other organizations, domestic and international (해양경비안전본부 정보활동의 법적·제도적 측면의 문제점 분석 및 개선방안 연구)

  • Soon, Gil-Tae
    • Korean Security Journal
    • /
    • no.44
    • /
    • pp.85-116
    • /
    • 2015
  • Found in 23 Dec 1953 to cope with illegal fishing of foreign ships and coastal guard duty, Korea Coast Guard was re-organized as an office under Ministry of Public Safety since the outbreak of sinking of passenger ship "Sewolho". In the course of re-organization, intelligence and investigation duty were transferred to Police Department except "Cases happened on the sea". But the definition of intelligence duty is vague and there are lots of disputes over the jurisdiction and range of activities. With this situation in consideration, the object of this study is to analyse legal and institutional characteristic of KCG Intelligence, to compare them to that of Police Department, foreign agencies like Japan Coast Guard and US Coast Guard, to expose the limit and to suggest solution. To summarize the conclusion, firstly, in the legal side, there is no legal basis on intelligence in [The Government Organization Act], no regulation for mission, weak basis in application act. Secondly, in the institutional side, stated in the minor chapter of [The Government Organization Act], 'the cases happened on sea' is a quite vague definition, while guard, safety, maritime pollution duty falls under 'on the sea' category, intelligence fell to 'Cases happened on the sea' causing coast guard duty and intelligence have different range. In addition, reduced organization and it's manpower led to ineffective intelligence activities. In the case of Police Department, there is definite lines on 'administration concerning public security' in [The Government Organization Act], specified the range of intelligence activities as 'collect, make and distribute information concerning public security' which made the range of main duty and intelligence identical. Japanese and US coast guards also have intelligence branch and performing activities appropriate for the main missions of the organizations. To have superiority in the regional sea, neighboring countries Japan and China are strengthening on maritime power, China has launched new coast guard bureau, Japan has given the coast guard officers to have police authority in the regional islands, and to support the objectives, specialized intelligence is organized and under development. To secure maritime sovereignty and enhance mission capability in maritime safety duty, it is strongly recommended that the KCG intelligence should have concrete legal basis, strengthen the organization and mission, reinforce manpower, and ensure specialized training administrative system.

  • PDF

Improvement for Impact Assessment of Marine Physical on the Development of Ports and Fishing Harbors in the East Coast (동해안 항만 및 어항 개발사업에 따른 해양물리학적 영향평가 개선방안)

  • Kim, In-Cheol;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Yu, Jun;Lee, Dae-In;Kim, Young-Tae;Kim, Hee-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • This paper suggested the improvement of marine environmental impact assessment in eastern coast as analyzing consultation on the coastal area utilization for development of ports and fishing harbors for 3years in the east coast. The results of survey are only 3cases, 12cases and 16cases each for ocean currents, wave and sounding data. However, for development of ports and fishing harbors in eastern coast, ocean characteristics in eastern coast different than in the West Sea, South Sea is considered to marine environmental impact assessment. For development of ports and fishing harbors in east coast where the influences of ocean currents, wind-driven current and waves are dominant, the effect of the current should be considered to improve the reproducibility of tidal current. The wave should also be considered as an assessment criteria to obtain the validity of project such as harbor tranquility, functionality of breakwaters and stability. In addition, sediment inflow in river and exact water depth data of the ocean should be applied to numerical modeling and set wave-induced current to external force of sediment transport to predict the problems such as the harbor siltation and the coastal erosion considering ocean characteristics in the east coast.