• Title/Summary/Keyword: coal fly ash

Search Result 355, Processing Time 0.022 seconds

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics (증기상 원소수은의 흡착제 개발 및 흡착특성 연구)

  • Cho, Namjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2021
  • Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.

Antioxidant and anti-inflammatory activities of Lespedeza cuneata in Coal fly ash-induced murine alveolar macrophage cells

  • Abdul Wahab;Hwayong Sim;Kyubin Choi;Yejin Kim;Yookyeong Lee;Byungwook Kang;Yu Seong No;Dongyeop Lee;Inseo Lee;Jaehyeon Lee;Hwajun Cha;Sung Dae Kim;Evelyn Saba;Man Hee Rhee
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2023
  • Lespedeza cuneata (LC) is a perennial plant used in herbal medicine to treat numerous diseases, including prostatic hyperplasia, diabetes, early atherosclerosis, and hematuria. Reference collections of bioactive compounds of LC are crucial for the determination of their pharmacological properties. However, little is known regarding its anti-oxidative and anti-inflammatory effects in alveolar macrophage (MH-S) cells. This study examined whether LC can inhibit reactive oxygen species and Coal fly ash (CFA) induced inflammation in MH-S cells. The anti-oxidative effects of LC were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, anti-inflammatory effects were examined using nitric oxide (NO) assay, and cytotoxicity was analyzed using methyl thiazolyl tetrazolium assay. The expression of inflammatory cytokine genes was assessed through a reverse-transcription polymerase chain reaction. Our results revealed that LC exhibited high radical scavenging activity and a dose-dependent (7.8-1,000 ㎍/mL) inhibition of oxidation as compared to ascorbic acid and Trolox. It also inhibited CFA-induced NO production in MH-S cells. Moreover, it suppressed the CFA exposure-mediated expression of pro-inflammatory mediators and cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. These results suggest that LC is a potent antioxidant and anti-inflammatory agent that can be useful as a nutraceutical product.

Engineering Characteristics of CLSM with Regard to the Particle Size of Bottom Ash (저회의 입도변화에 따른 CLSM의 공학적특성)

  • Lee, Yongsoo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.5-10
    • /
    • 2020
  • As the demand for the recycling of industrial by-products increases due to various environmental restrictions including the prohibition of ocean disposal, various studies regarding the recycling of industrial by-products are currently being carried out. One of the industrial by-product, coal ash is produced from thermal power generation; studies on the recycling of fly ash have been actively carried out and it is currently recycled in various fields. In the case of bottom ash, however, only a portion of the total amount generated is primarily processed into a particle size of 2~4mm or less than 2mm to be used for gardening purpose and light weight aggregate and so on. The remaining amount is buried at ash disposal sites. Therefore, various studies are needed to develop measures to use bottom ash. This study aimed at identifying the optimal particle size and mixing ratio of bottom ash to be used as CLSM aggregate. To this end, it evaluated the usability of bottom ash as CLSM aggregate, by investigating the flowability and strength change characteristics of CLSM produced with regard to the mixing ratio of weathered granite soil and bottom ash, particle size of bottom ash to be mixed and soil binder addition rate and conducting a heavy metal leaching test.

Study on Characteristics of Fine Bottom Ash Based Geopolymer Mortar (미분쇄 바텀애시 기반 지오폴리머 모르타르 특성에 관한 연구)

  • Lim, Gwi-Hwan;Lee, Jeong-Bae;Jeong, Hyun-Kyu;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.418-424
    • /
    • 2016
  • This study is an experimental study on the recycling of bottom ash in coal ash discharged from a thermal power plant. Bottom ash has limited research on recycling because it has more porous and higher water absorption ratio than fly ash. In this paper, the bottom ash was pulverized to a specific surface area of $4,000cm^2/g$ in order to use as a binder, and the flow, compressive strength test and microstructure analysis of the bottom ash based geopolymer mortar were performed. The flow measurement results of the geopolymer mortar showed that the flow rate was improved by increasing mixing water as the molar concentration of activator was increased. Compressive strength increased with increasing curing temperature and molar concentration. Through the microstructure analysis, we could confirm the geopolymer gel produced by the reaction of the condensation polymerization. It is considered that it is possible to make the bottom ash based geopolymer concrete through proper molar concentration of activator and high temperature curing.

Investigation of Characteristics of Incinerator Bottom Ash and Assessment for Recycle due to the Change of MSW Composition (생활폐기물 성상변화에 따른 소각시설 바닥재의 특성 변화와 시멘트 클링커 원료로 재활용 가능성 평가)

  • Lee, Woo Chan;Shin, Deuk Chol;Dong, Jong In
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.103-106
    • /
    • 2014
  • Recycling of bottom ash from municipal solid waste (MSW) incinerator has been strictly limited due to its composition of high level chlorine and other unfavorable substances. The composition of MSW has been, however, changed after the introduction of garbage-bag sales system, extended producer responsibility (EPR) policy and the prohibition of direct landfill of food waste. Recent waste shows reduced moisture and chlorine content, increased calorific value due to the separation of food waste, incombustible materials and PVC. The main purpose of this study is to investigate the trend of composition changes of MSW incinerator bottom ash and to compare the analytical results with those before the separation system was introduced. CaO content of bottom ash, one of the major component of cement clinker, increased from 26.7% in 2001 to 34.0% in 2006. The chlorine content showed a dramatic decrease from 1.84% in 2001 to 0.00655% in 2006, which is closely compatible with that of the fly ash of coal-utilizing thermal power plants, which is mainly due to the changes of MSW composition. It is eventually considered that there is a possibility of utilizing the incinerator bottom ash as a raw material of cement clinker feed substances.

Characterization of Artificial Aggregates Fabricated by Using Various Forming Methods (다양한 성형법으로 제조된 인공 골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.94-101
    • /
    • 2009
  • The physical properties of artificial aggregates made from clay and inorganic wastes with poor plasticity depends largely on forming method. The artificial aggregates composing of coal fly ash, stone sludge and clay were fabricated using 4 different forming methods and those physical properties were comparatively analyzed. The surface of aggregates made through the extrusion forming process was dense and smooth but was rough for the aggregates obtained by crushing a tile-shaped green body. The aggregates made by pelletizing process had a weak green strength and bumpy surface. The shell generated at surface during a high temperature sintering process induced the most aggregates to be bloated due to a dense shell. But the aggregates made through pelletizing process with dense surface layer showed no significant change in bulk density with sintering temperatures. The water absorption of aggregates decreased with sintering temperature, and that of pelletized specimen was standing $1.8{\sim}2.2$ times higher than that of made by other forming methods. It is concluded that the aggregates having various properties could be fabricated from one batch by using different forming methods.

Removal of Copper ton by Na-P1 Synthesized from Jeju scoria (제주 스코리아로부터 합성된 Na-P1 제올라이트에 의한 Cu 이온 제거)

  • 감상규;홍정연;현성수;안병준;이민규
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • The removal performance of copper ion was studied using Na-P1 zeolites synthesized from Jeju scoria. The scoria which is found in large amounts in Jeju Island, was sampled at four regions, Jeju-shi Bonggae-dong(A). Pukcheju-gun Hanlim-eup Sangmyong-ri Mangoreum(B), Pukcheju-gun Hanlim-eup Keumag-ri(C) and Namcheju-gun Andeok-myun Dongkwang-ri(D). Synthetic Na-P1 zeolites used in this study were more effective than natural zeolite and scoria for the removal of copper ion. The removal performances of copper ion decreased in the order of Na-P1(D) > Na-P1(C) > Na-P1(B) > Na-P1(A) among Na-P1 synthesized from the scoria according to region. These results showed the same trend with cation exchange capacity(CEC) for each synthetic zeolite, i.e., the synthetic Na-P1 zeolite with a higher CEC showed a higher removal performance. The effective diffusion coefficients of copper ion by synthetic Na-P1 zeolites were one hundred and ten times higher than those by a pure zeolite 4A and the zeolite A synthesized from coal fly ash, respectively.

Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength (일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체)

  • Kim, Kyu Heon;Kim, Tae Rim;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

Treatment of Industrial Wastes by Melting Using H.F. Induction Furnace (고주파 유도로를 이용한 산업 폐기물의 용융처리)

  • 정진기;정헌생;이재천;윤인주;남기대
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 1997
  • Iron and slag were prepared by melting mixed industrial wastes in an induction furnace. The wastes were steel can, limestone sludge, waste foundry sand, coal fly ash, and glasses. The effects of their mixing ratio on the charactenstics of the meltcd slag were investigated. The wastes were melted to slag under the constant basicity of 1.2. It was found that the major phases of the slag were P-C,S and C,AS and then ratio was determined by the mixing ratio af waste materials. The recovery of iron was about 93-95%. The feasibility of using the slag as the aggregate was confirmed by thc elution and campression tests.

  • PDF

Unconfined Compressive Stress-Strain Behavior of Cemented Granular Geomaterials (강화된 입상지반재료의 일축압축 응력-변형거동)

  • Park, Seong-Wan;Cho, Chung Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.183-190
    • /
    • 2009
  • It is necessary to predict the deformation and stresses on soils to establish the nonlinear stress-strain relationship of geomaterials at various strain levels. Especially, a need exists to establish the pre-failure nonlinear characteristic of cemented granular geomaterials used in road constructions. In this paper, therefore, conventional granular soils were mixed with various cementing materials, such as cement and fly ash from coal combustion by-products. Then, the normalized nonlinear behavior of cemented geomaterials was assessed using unconfined compression test. In addition, various constitutive models of soils were evaluated for estimating pre-failure non-linear behavior of cemented geomaterials from the test results.