• Title/Summary/Keyword: co-sputtering

Search Result 814, Processing Time 0.026 seconds

Measurement of the Slider-Disk Contact during Load/Unload process with AE and Electrical Resistance (Load/Unload 시 AE 와 전기저항을 이용한 슬라이더-디스크 충돌측정에 관한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Lim, Soo-Cheol;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.160-166
    • /
    • 2007
  • In this paper, the measured electrical resistance method is proposed to analyze the ramp-tab contact during the load/unload (L/UL) process. Since this method supplies the voltage change due to the resistance change, we can easily and conveniently identify the ramp-tab contact from the acoustic emission (AE) signal. At first, we carefully deposit the conductive material on the surface of the conventional ramp by sputtering method. The ratio frequency (RF) magnetron co-sputtering system is applied to accomplish the deposited double-layers on the ramp surface. One layer is the stainless steel for the conductive layer and the other is the titanium layer for the cohesive function between the ramp surface and the stainless steel layer. In order to guarantee the stiffness and damping properties of the original ramp, the deposited conductive layer is intended to have very thin thickness. After integration the proposed ramp device into the L/UL system and networking the electrical resistance circuit, the L/UL performance is experimentally evaluated by comparing the measured electrical resistance signal and AE signal.

  • PDF

Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향)

  • Oh, Y.C.;Kim, J.S.;Cho, C.N.;Shin, C.G.;Song, M.J.;So, B.M.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.718-721
    • /
    • 2004
  • The $(Sr_{0.9}Ca_{0.1})TiO_3$(SCT) thin films are deposited on Pt-coated electrode$(Pt/TiN/SiO_2/Si)$ using RF sputtering method at various substrate temperature. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of $100\sim500[^{\circ}C]$. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of $-80\sim+190[^{\circ}C]$. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

  • PDF

Effects of Cu Addition on Microstructural and Mechanical Properties of Mo-Cu-N Coatings (Cu 첨가가 Mo-Cu-N 코팅의 미세구조와 기계적 특성에 미치는 영향)

  • Kim, Soobyn;Yoon, Hae-Won;Lee, Han-Chan;Moon, KyoungIl;Hong, Hyun Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.227-232
    • /
    • 2019
  • Mo-N based coatings have been studied for enhancing mechanical characteristics of thin films. In the case of Mo-X-N coatings, the microstructure and mechanical properties can be affected by the addition of the third element. In this work, Mo-Cu-N coatings were successfully fabricated with varying the Cu content from 4.5 at% to 31 at% by the co-sputtering method. Thus, properties of the coatings were analyzed by EDS, SEM, XRD, AFM, nano indentation and scratch test techniques. From observed results, MoxN bonds were made in a nitrogen atmosphere and Cu elements were present at grain boundaries. In addition, coatings with the Cu content above 14 at% had a Cu3N peak in the XRD results. Thus, it is suggested that the formation of Cu3N phase affected the microstructure and mechanical properties of Mo-Cu-N coatings. Mechanical properties of Mo-Cu-N coatings were found to be relatively better at Cu content of about 12 at%.

Measurement of Step Difference using Digital Holography of ITO Thin Film Fabricated by Sputtering Method (스퍼터링 공법으로 제작한 ITO 박막의 디지털 홀로그래피를 이용한 단차에 대한 측정)

  • Jung, Hyun Il;Shin, Ju Yeop;Park, Jong Hyun;Jung, Hyunchul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.84-89
    • /
    • 2021
  • Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.

Influence of post-annealing temperature on double layer ZTO/GZO deposited by magnetron co-sputtering

  • Oh, Sung Hoon;Cho, Sang Hyun;Jung, Jae Heon;Kang, Sae Won;Cheong, Woo Seok;Lee, Gun Hwan;Song, Pung Keun
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.140-144
    • /
    • 2012
  • Ga-doped ZnO (GZO) was a limit of application on the photovoltaic devices such as CIGS, CdTe and DSSC requiring high process temperature, because it's electrical resistivity is unstable above 300 ℃ at atmosphere. Therefore, ZTO (zinc tin oxide) was introduced in order to improve permeability and thermal stability of GZO film. The resistivity of GZO (300 nm) single layer increased remarkably from 1.8 × 10-3Ωcm to 5.5 × 10-1Ωcm, when GZO was post-annealed at 400 ℃ in air atmosphere. In the case of the ZTO (150 nm)/GZO (150 nm) double layer, resistivity showed relatively small change from 3.1 × 10-3Ωcm (RT) to 1.2 × 10-2Ωcm (400 ℃), which showed good agreement with change of carrier density. This result means that ZTO upper layer act as a barrier for oxygen at high temperature. Also ZTO (150 nm)/GZO (150 nm) double layer showed lower WVTR compared to GZO (300 nm) single layer. Because ZTO has lower WVTR compared to GZO, ZTO thin film acts as a barrier by preventing oxygen and water molecules to penetrate on top of GZO thin film.

A Study on the widthwise thickness uniformity of HTS wire using thickness gradient deposition technology

  • Gwantae Kim;Insung Park;Jeongtae Kim;Hosup Kim;Jaehun Lee;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.24-27
    • /
    • 2023
  • Until now, many research activities have been conducted to commercialize high-temperature superconducting (HTS) wires for electric applications. Most of all researchers have focused on enhancing the piece length, critical current density, mechanical strength, and throughput of HTS wires. Recently, HTS magnet for generating high magnetic field shows degraded performance due to the deformation of HTS wire by high electro-magnetic force. The deformation can be derived from widthwise thickness non-uniformity of HTS wire mainly caused by wet processes such as electro-polishing of metal substrate and electro-plating of copper. Gradient sputtering process is designed to improve the thickness uniformity of HTS wire along the width direction. Copper stabilizing layer is deposited on HTS wire covered with specially designed mask. In order to evaluate the thickness uniformity of HTS wire after gradient sputtering process, the thickness distribution across the width is measured by using the optical microscope. The results show that the gradient deposition process is an effective method for improving the thickness uniformity of HTS wire.

Effect of TiO2 buffer layer on the electrical and optical properties of IGZO/TiO2 bi-layered films

  • Gong, Tae-Kyung;joo, Moon hyun;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.178.1-178.1
    • /
    • 2015
  • In and Ga doped ZnO (IGZO) thin films were prepared by radio frequency magnetron sputtering without intentional substrate heating on glass substrate and TiO2-deposited glass substrates to consider the effect of a thin TiO2 buffer layer on the optical and electrical properties of the films. The thicknesses of the TiO2 buffer layer and IGZO films were kept constant at 5 and 100 nm, respectively. Since the IGZO/TiO2 bi-layered films show the higher FOM value than that of the IGZO single layer films, it is supposed that the IGZO/TiO2 bi-layered films will likely perform better in TCO applications than IGZO single layer films.

  • PDF

Flexible Plastic ITO Substrates for OLED using Vapor-Polymerized Parylene C

  • Lee, Kyu-Chul;Choi, Soo-Hyun;Cho, Sung-M;Choi, Kang-Yong;Lee, Jung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.973-974
    • /
    • 2004
  • We report the fabrication of flexible plastic ITO substrates and the measurement of oxidant permeation through the substrates. The plastic ITO substrates are composed of multiple organic and inorganic thin films. The organic thin films are deposited by vapor polymerization and the inorganic films are deposited by ion beam sputtering. In order to estimate the oxidant permeation rate, the pure Ca film is formed on the substrates and the amount of CaO produced by the oxidation of Ca is measured.

  • PDF

The Influence of Bi-Sticking Coefficient in Bi-2212 Thin Film

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.152-156
    • /
    • 2000
  • Bi-thin films are fabricated by an ion beam sputtering, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Planar-Type Micro Gas Sensor (평면형 마이크로 가스센서)

  • 이상윤;정완영;이덕동
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.101-104
    • /
    • 1998
  • A new planar-type micro gas sensor was designed and fabricated on silicon substrate and the operating characteristics of the sensor were investigated. The thin sensitive film of the sensor was fabricated by spin-coating of the SnO$_2$ sol solution which was synthesized by hydrothermal method. The spin-coating method for preparation of sensing layer was adopted to improve the long-term stability of the fabricated sensing film instead of physical methods such as rf sputtering and thermal evaporation. The fabricated microsensor showed a fairly good sensing performance for CO gas in air at 250$^{\circ}C$ The sensitivity(S=Ra/Rg) was shown to be about 5 to 2000ppm CO with heating power of 50mW.

  • PDF