• Title/Summary/Keyword: co-simulation

Search Result 3,291, Processing Time 0.036 seconds

Characteristic Tests on the Gas Turbine Generator System for Determination and Verification of Model Parameters in a Combined Cycle Power Plant (복합화력발전소 가스터빈 발전기계통 모델정수 도출 및 검증을 위한 특성시험)

  • Kim, Jong Goo;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.35-40
    • /
    • 2021
  • In this study, a technical characteristic test was conducted on the gas turbine generator system of Seoincheon Combined cycle no.6 to derive and verify the model constants. As a result of the generator maximum/minimum reactive power limit test, the maximum reactive power limit is 80 MVar and the minimum is -30 MVar. The generator uses the GENROU model, the field time constant (T'do) is 4.077 s, and the inertial constant (H) is 5.461 P.U. Excitation system used ESST4B model to derive and verify model constants by simulating no-load 2% AVR step test, PSS modeling derived from PSS2A model constants, and simulated and compared measurement data measured when PSS off/on Did. The GGOV1 model was used for the governor-turbine, and the numerical stability of the determined governor-turbine model constant was verified by simulating a 10% governor step test through the PSS/E simulation program

Radioisotope identification using sparse representation with dictionary learning approach for an environmental radiation monitoring system

  • Kim, Junhyeok;Lee, Daehee;Kim, Jinhwan;Kim, Giyoon;Hwang, Jisung;Kim, Wonku;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1037-1048
    • /
    • 2022
  • A radioactive isotope identification algorithm is a prerequisite for a low-resolution scintillation detector applied to an unmanned radiation monitoring system. In this paper, a sparse representation with dictionary learning approach is proposed and applied to plastic gamma-ray spectra. Label-consistent K-SVD was used to learn a discriminative dictionary for the spectra corresponding to a mixture of four isotopes (133Ba, 22Na, 137Cs, and 60Co). A Monte Carlo simulation was employed to produce the simulated data as learning samples. Experimental measurement was conducted to obtain practical spectra. After determining the hyper parameters, two dictionaries tailored to the learning samples were tested by varying with the source position and the measurement time. They achieved average accuracies of 97.6% and 98.0% for all testing spectra. The average accuracy of each dictionary was above 96% for spectra measured over 2 s. They also showed acceptable performance when the spectra were artificially shifted. Thus, the proposed method could be useful for identifying radioisotopes in gamma-ray spectra from a plastic scintillation detector even when a dictionary is adapted to only simulated data. Furthermore, owing to the outstanding properties of sparse representation, the proposed approach can easily be built into an insitu monitoring system.

Analysis of Research Trends in the Hydrogen Energy Field Using Co-Occurrence Keyword Analysis (동시출현 핵심단어 분석을 활용한 수소 에너지 관련 연구동향 분석)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.1-18
    • /
    • 2022
  • Due to the advent of the hydrogen economy era, various studies are being conducted to transport and store hydrogen, and the risk of hydrogen explosion is emerging. In order to figure out the new technology related to hydrogen energy, it is necessary to figure out the overall research trends related to various hydrogen energy at home and abroad. In this study, a bibliometric analysis using VOSViewer for the papers published in the international journal was conducted. From the analysis in different time period using the keywords including hydrogen explosion, hydrogen pipeline, and hydrogen storage, it was found that there were frequent paper publications using numerical analysis simulation. It is also found that more and more researches on safety and hydrogen explosion in hydrogen storage and hydrogen pipeline transportation have been conducted in 2011-2022 compared to those in 2000-2010.

A Study on the Installation of Pedestrian-oriented Roundabout (보행자 중심의 회전교차로 설치방안에 관한 연구)

  • Lee, Seoksoon;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2022
  • As of 2020, 1,564 roundabouts have been installed and operated to prevent major traffic accidents and promote safe and smooth passage over the past 10 years. According to the Korea Transportation Research Institute, the number of accidents decreased by an average of 43.8% per year, fatal accidents by 50%, and serious injuries by 48.1%, confirming the safety effect. However, most intersections with high pedestrian traffic, such as children's protection areas near elementary schools, operate signal intersections. Therefore, in this study, a simulation was performed through the VISSM program to conduct a study on the pedestrian-centered roundabout installation method. This study was conducted to ensure that pedestrians can have the right of way safely by installing and operating traffic lights at crosswalks on roundabouts located in urban areas or child protection zones.

The Design of Cavity Filter to enhance the Group Delay characteristics for 5G Mobile Communication Repeater (군 지연 특성을 개선한 5G 이동통신 중계기용 캐비티 필터의 설계)

  • Yoo, Soo-Hyung;Jin, Duck-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1032-1039
    • /
    • 2022
  • In this paper, we designed and implemented a cavity bandpass filter combined with a cross-coupling equalizer structure to enhance Group delay for 5G mobile network repeater, which can replace the SAW (Surface Acoustic Wave) type bandwidth filter used in the existing mobile communication system. Using the 3D EM simulation tool (HFSS), the resonance frequency, the coupling coefficient between resonators, and external quality coefficient between resonators were calculated. Based on this, a 12th bandpass filter was constructed to have attenuation characteristics of more than 20dB at the edge end of both sides of the band with a metal cavity structure with a frequency band of 3500MHz to 3600MHz and bandwidth of 97.85MHz. The designed bandpass filter satisfies the group delay time requirement for the 5G mobile communication standard and the in-band and out-band frequency responses.

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Development of Comprehensive performance test equipment to confirm the performance of small radar systems (소형 추적 레이다 시스템 성능확인을 위한 종합성능시험 장비 개발)

  • Hong-Rak Kim;Youn-Jin Kim;Seong-Ho Park;Man Hee LEE;Da-Been LEE
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.139-147
    • /
    • 2023
  • The compact tracking radar system is a pulsed radar tracking system that searches, detects, and tracks targets in real time against aircraft targets with a small RCS(Radar Cross Section) maneuvering at high speed. This paper describes the development of comprehensive performance test equipment to verify the performance of the radar system in a anechoic chamber environment. Describes the design and manufacture of comprehensive performance test equipment to meet requirements, including the generation of simulated target signals to simulate aircraft target signals to verify performance in the laboratory environment of radar systems. It also describes a GUI(Graphic User Interface) program to check performance through a test in conjunction with the tracking radar system. Verify the comprehensive performance test equipment implemented through the performance test.

An Analysis of International Research Trends in Green Infrastructure for Coastal Disaster (해안재해 대응 그린 인프라스트럭쳐의 국제 연구동향 분석)

  • Song, Kihwan;Song, Jihoon;Seok, Youngsun;Kim, Hojoon;Lee, Junga
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.1
    • /
    • pp.17-33
    • /
    • 2023
  • Disasters in coastal regions are a constant source of damage due to their uncertainty and complexity, leading to the proposal of green infrastructure as a nature-based solution that incorporates the concept of resilience to address the limitations of traditional grey infrastructure. This study analyzed trends in research related to coastal disasters and green infrastructure by conducting a co-occurrence keyword analysis of 2,183 articles collected from the Web of Science (WoS). The analysis resulted in the classification of the literature into four clusters. Cluster 1 is related to coastal disasters and tsunamis, as well as predictive simulation techniques, and includes keywords such as surge, wave, tide, and modeling. Cluster 2 focuses on the social system damage caused by coastal disasters and theoretical concepts, with keywords such as population, community, and green infrastructure elements like habitat, wetland, salt marsh, coral reef, and mangrove. Cluster 3 deals with coastal disaster-related sea level rise and international issues, and includes keywords such as sea level rise (or change), floodplain, and DEM. Finally, cluster 4 covers coastal erosion and vulnerability, and GIS, with the theme of 'coastal vulnerability and spatial technique'. Keywords related to green infrastructure in cluster 2 have been continuously appearing since 2016, but their focus has been on the function and effect of each element. Based on this analysis, implications for planning and management processes using green infrastructure in response to coastal disasters have been derived. This study can serve as a valuable resource for future research and policy in responding to and managing various disasters in coastal regions.

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

Numerical Simulation on Reduced Runup Height of Solitary Wave by Fixed Submerged and Floating Rectangular Obstacles (고정된 사각형 수중 및 부유식 구조물에 의한 고립파의 처오름높이 저감 수치모의)

  • Choong Hun, Shin;Hyung Suk, Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.211-221
    • /
    • 2022
  • The wave runup height is one of the most important parameters for affecting the design of coastal structures such as dikes, revetments, and breakwaters. In this study, SWASH (Zijlema et al., 2011), a non-hydrostatic pressure numerical model, was used to analyze the effect of reducing The wave runup height of solitary waves by submerged and floating rectangular obstacles. It was confirmed that the SWASH model reproduces the propagation, breaking, and runup of solitary waves quite well. In addition, it was confirmed that the wave deformation of the solitary wave by submerged and floating rectangular obstacles was well reproduced. Finally, we conducted an examination of the effect of reducing the runup height of submerged and floating rectangular obstacles. Reduced runup heights are calculated and the characteristics of runup height reduction according to the dimensions of the obstacle were analyzed. The energy attenuation effect of the floating obstacle is greater than the submerged obstacle, and it is shown to be more effective in reducing the runup height.