DOI QR코드

DOI QR Code

Analysis of Research Trends in the Hydrogen Energy Field Using Co-Occurrence Keyword Analysis

동시출현 핵심단어 분석을 활용한 수소 에너지 관련 연구동향 분석

  • 김민주 (인하대학교 에너지자원공학과) ;
  • 권상기 (인하대학교 에너지자원공학과)
  • Received : 2022.08.26
  • Accepted : 2022.09.06
  • Published : 2022.09.30

Abstract

Due to the advent of the hydrogen economy era, various studies are being conducted to transport and store hydrogen, and the risk of hydrogen explosion is emerging. In order to figure out the new technology related to hydrogen energy, it is necessary to figure out the overall research trends related to various hydrogen energy at home and abroad. In this study, a bibliometric analysis using VOSViewer for the papers published in the international journal was conducted. From the analysis in different time period using the keywords including hydrogen explosion, hydrogen pipeline, and hydrogen storage, it was found that there were frequent paper publications using numerical analysis simulation. It is also found that more and more researches on safety and hydrogen explosion in hydrogen storage and hydrogen pipeline transportation have been conducted in 2011-2022 compared to those in 2000-2010.

수소 경제 시대의 도래로 인해 수소 운송, 저장을 하기 위해 다양한 연구들이 진행되고 있으며, 그로 인한 수소 폭발의 위험성이 대두되고 있다. 수소 에너지와 관련된 최신 기술 현황을 파악하기 위하여 국내외 다양한 수소 에너지와 관련된 전체적인 연구동향을 파악하는 것이 필요하다. 이와 관련하여 본 논문에서는 국제 학술지에서 게재된 전체 논문을 대상으로 VOSViewer를 이용한 계량서지분석을 실시하였다. 수소 폭발, 수소 파이프라인, 수소 저장의 시기별 핵심단어 분석 결과, 수치해석 시뮬레이션을 활용한 논문들이 많이 게재되고 있었으며, 2000-2010년에 비해 2011-2022년에는 수소 저장, 수소 파이프라인 연구 분야에서 안전성과 수소 폭발에 대한 연구가 더욱 더 많이 진행되고 있었음을 알 수 있다.

Keywords

Acknowledgement

이 논문은 한국연구재단의 이공분야기초연구사업(NRF-2022R1F1A1064304)의 지원으로 수행되었습니다.

References

  1. 관계부처합동, 2019, 수소경제 활성화 로드맵.
  2. 관계부처합동, 2020, 수소기술개발 로드맵 이행현황 및 향후 계획(안).
  3. 관계부처합동, 2021, 제1차 수소경제 이행 기본계획, 산업통상자원부 공고 제 2021-806호.
  4. 김민주, 권상기, 2022, 동시출현 핵심단어 분석을 활용한 암반발파 분야의 연구 동향 분석, 화약⋅발파, Vol. 40, No. 1, pp. 1-16. https://doi.org/10.22704/KSEE.2022.40.1.001
  5. 대한무역투자연구센터, 2022, 주요국 수소경제 동향 및 우리기업 진출전략, kotra 해외시장뉴스. pp. 1-60.
  6. 류제헌, 2021, 글로벌 수소 경제 HYDROGENomics: 시장 침투 본격화, 미래에셋 증권 무역 투자 연구센터
  7. 백주홍, 이향직, 장창봉, 2016, CFD 시뮬레이션을 이용한 제한된 공간에서의 수소, LNG, LPG 폭발특성 비교, 한국가스학회지, Vol. 20, No. 3, pp. 12-21. https://doi.org/10.7842/KIGAS.2016.20.3.12
  8. 산업통상자원부, 2022, 수소경제 육성 및 수소 안전관리에 관한 법률(약칭: 수소법), 법률 제18889호, 2022. 6. 10., 일부개정.
  9. 오규형, 이광원, 2004, 수소의 폭발 특성에 관한 연구, 한국수소 및 신에너지학회논문집, Vol. 15, No. 3, pp. 228-234.
  10. 오규형, 이성은, 김태훈, 2004, 수소가스 폭발 화재의 특성에 관한 연구, 한국화재소방학회 학술대회 논문집, pp. 64-69.
  11. 월간수소경제, 2022, 수소산업 통계(2022년6월30일 기준), 2022.07.29. https://www.h2news.kr/news/article.html?no=10159
  12. 이상인, 서정일, 이요한, 김석우, 전근우, 2019, 산지하천을 대상으로 한 국내 연구 동향 분석: 국제 연구 동향과의 비교, 한국환경생태학회지, Vol. 33, No. 2, pp. 216-227.
  13. 임영협, 김석우, 남수연, 전근우, 김민석, 2020, 동시출현단어 분석을 이용한 토양침식 연구 동향 비교 분석, 한국환경생태학회지, Vol. 34, No. 5, pp. 413-424.
  14. 진채령, 어수형, 2018, 텍스트마이닝과 동시출현단어 분석을 이용한 국내 조류학 연구동향, 한국조류학회지, Vol. 25, No. 2, pp. 126-132.
  15. 천강, 김진수, 2020, 주요국의 수소경제 지원 정책과 시사점, 한국자원공학회지, Vol. 57, No. 6, pp. 629-639.
  16. Bai, M., Song, K., Sun, Y., He, M., Li, Y. and Sun, J., 2014, An overview of hydrogen underground storage technology and prospects in China, Journal of Petroleum Science and Engineering, Vol. 124, pp. 132-136. https://doi.org/10.1016/j.petrol.2014.09.037
  17. Baraldi, D., Kotchourko, A., Lelyakin, A., Yanez, J., Middha, P., Hansen, O. R., ... and Molkov, V., 2009, An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel, International Journal of Hydrogen Energy, Vol. 34, No. 18, pp. 7862-7872. https://doi.org/10.1016/j.ijhydene.2009.06.055
  18. Caglayan, D. G., Weber, N., Heinrichs, H. U., Linben, J., Robinius, M., Kukla, P. A. and Stolten, D., 2020, Technical potential of salt caverns for hydrogen storage in Europe, International Journal of Hydrogen Energy, Vol. 45, No. 11, pp. 6793-6805. https://doi.org/10.1016/j.ijhydene.2019.12.161
  19. Cao, Y., Wang, Y., Song, X., Xing, H., Li, B. and Xie, L., 2019, External overpressure of vented hydrogen-air explosion in the tube, International Journal of Hydrogen Energy, Vol. 44, No. 60, pp. 32343-32350. https://doi.org/10.1016/j.ijhydene.2019.10.086
  20. Cheng, Y. F., 2007, Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking, International Journal of Hydrogen Energy, Vol. 32, No. 9, pp. 1269-1276. https://doi.org/10.1016/j.ijhydene.2006.07.018
  21. Choi, I. Y., Shin, B. S., Kwak, S. K., Kang, K. S., Yoon, C. W. and Kang, J. W., 2016, Thermodynamic efficiencies of hydrogen storage processes using carbazole-based compounds, International Journal of Hydrogen Energy, Vol. 41, No. 22, pp. 9367-9373. https://doi.org/10.1016/j.ijhydene.2016.04.118
  22. Dong, C. F., Liu, Z. Y., Li, X. G. and Cheng, Y. F., 2009, Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking, International Journal of Hydrogen Energy, Vol. 34, No. 24, pp. 9879-9884. https://doi.org/10.1016/j.ijhydene.2009.09.090
  23. Eftekhari, A. and Fang, B. Z., 2017, Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors, International Journal of Hydrogen Energy, Vol. 42, No. 40, pp. 25143-25165. https://doi.org/10.1016/j.ijhydene.2017.08.103
  24. Elberry, A. M., Thakur, J., Santasalo-Aarnio, A. and Larmi, M., 2021, Large-scale compressed hydrogen storage as part of renewable electricity storage systems, International journal of hydrogen energy, Vol. 46, No. 29, pp. 15671-15690. https://doi.org/10.1016/j.ijhydene.2021.02.080
  25. Gan, L., Huang, F., Zhao, X., Liu, J. and Cheng, Y. F., 2018, Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments, International Journal of Hydrogen Energy, Vol. 43, No. 4, pp. 2293-2306. https://doi.org/10.1016/j.ijhydene.2017.11.155
  26. Girvan, M. and Newman, M. E., 2002, Community structure in social and biological networks, Proceedings of the national academy of sciences, Vol. 99 No. 12, pp. 7821-7826. https://doi.org/10.1073/pnas.122653799
  27. Han, S, B,, 2015, Combustion characteristics of hydrogen by the thermodynamic properties analysis, Journal of Energy Engineering, Vol. 24, No. 2, pp. 84-90. https://doi.org/10.5855/ENERGY.2015.24.2.084
  28. Han, U., Oh, J. and Lee, H., 2018, Safety investigation of hydrogen charging platform package with CFD simulation, International Journal of Hydrogen Energy, Vol. 43, No. 29, pp. 13687-13699. https://doi.org/10.1016/j.ijhydene.2018.05.116
  29. He, Q., 1999, Knowledge discovery through co-word analysis.
  30. Johnson, N. and Ogden, J., 2012, A spatially-explicit optimization model for long-term hydrogen pipeline planning, International Journal of Hydrogen Energy, Vol. 37, No. 6, pp. 5421-5433. https://doi.org/10.1016/j.ijhydene.2011.08.109
  31. Kim, B. J., Lee, Y. S. and Park, S. J., 2008, A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers, International Journal of Hydrogen Energy Vol33, No. 15, pp. 4112-4115. https://doi.org/10.1016/j.ijhydene.2008.05.077
  32. Kim, E., Park, J., Cho, J. H. and Moon, I., 2013, Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea, International Journal of Hydrogen Energy, Vol. 38, No. 3, pp. 1737-1743. https://doi.org/10.1016/j.ijhydene.2012.08.079
  33. Kim, K. T., Ko, S. G. and Han, J. M., 2014, Effects of Microstructural inhomogeneity on HIC susceptibility and HIC evaluation methods for linepipe steels for sour service, In International Pipeline Conference American Society of Mechanical Engineers, Vol. 46124, pp. V003T07A040.
  34. Kim, Y. S. and J. G. Kim, 2018, Failure analysis of a thermally insulated pipeline in a district heating system, Engineering Failure Analysis, Vol. 83, pp. 193-206. https://doi.org/10.1016/j.engfailanal.2017.09.014
  35. Linstorm, P., 1998, NIST chemistry webbook, NIST standard reference database number 69, J. Phys. Chem. Ref. Data, Monograph, Vol. 9, pp. 1-1951.
  36. Lutostansky, E., Creitz, L., Jung, S., Schork, J., Worthington, D. and Xu, Y., 2013, Modeling of underground hydrogen pipelines, Process Safety Progress, Vol. 32, No. 2, pp. 212-216. https://doi.org/10.1002/prs.11572
  37. Mahajan, D., Tan, K., Venkatesh, T., Kileti, P. and Clayton, C. R., 2022, Hydrogen blending in gas pipeline networks-a review, Energies, Vol. 15, No. 10, pp. 3582. https://doi.org/10.3390/en15103582
  38. Makarov, D., Verbecke, F., Molkov, V., Kotchourko, A., Lelyakin, A., Yanez, J., ... and Gavrikov, A., 2010, An intercomparison of CFD models to predict lean and non-uniform hydrogen mixture explosions, International Journal of Hydrogen Energy,Vol. 35, No. 11, pp. 5754-5762. https://doi.org/10.1016/j.ijhydene.2010.02.105
  39. Moradi, R. and Groth, K. M., 2019, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, International Journal of Hydrogen Energy, Vol. 44, No. 23, pp. 12254-12269. https://doi.org/10.1016/j.ijhydene.2019.03.041
  40. Mori, D. and K. Hirose, 2009, Recent challenges of hydrogen storage technologies for fuel cell vehicles International Journal of Hydrogen Energy, Vol. 34, No. 10, pp. 4569-4574. https://doi.org/10.1016/j.ijhydene.2008.07.115
  41. Ohaeri, E., Eduok, U. and Szpunar, J., 2018, Hydrogen related degradation in pipeline steel: A review, International Journal of Hydrogen Energy, Vol. 43, No. 31, pp. 14584-14617. https://doi.org/10.1016/j.ijhydene.2018.06.064
  42. Shi, X., Yan, W., Wang, W., Shan, Y. and Yang, K., 2018, Hydrogen-induced cracking resistance of novel Cu-bearing pipeline steels, Acta Metallurgica Sinica, Vol. 54, No. 10, pp. 1343-1349.
  43. Tarkowski, R., 2019, Underground hydrogen storage: Characteristics and prospects, Renewable and Sustainable Energy Reviews, Vol. 105, pp. 86-94. https://doi.org/10.1016/j.rser.2019.01.051
  44. Van Eck, N.J. and Waltman, L., 2010, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, Vol. 84, No. 2, pp. 523-538. https://doi.org/10.1007/s11192-009-0146-3
  45. Van Eck, N.J. and Waltman, L., 2011, Text mining and visualization using VOSviewer, arXiv preprint arXiv:1109.2058.
  46. Van Eck, N.J. and Waltman, L., 2013, VOSviewer manual. Leiden: Univeristeit Leiden Vol. 1, No. 1, pp. 1-53.
  47. Wallin, J. A., 2005, Bibliometric methods: pitfalls and possibilities, Basic & clinical pharmacology & toxicology, No. 97, Vol. 5, pp. 261-275. https://doi.org/10.1111/j.1742-7843.2005.pto_139.x
  48. Wang, A., van der L. K., Peters, D. and Buseman, M., 2020, European hydrogen backbone: How a dedicated hydrogen infrastructure can be created.
  49. Zhang, Q. and Li, D., 2017, Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations, International Journal of Hydrogen Energy, Vol. 42, No. 21, pp. 14794-14808. https://doi.org/10.1016/j.ijhydene.2017.04.201
  50. Zhang, S., Lee, L. H., Sun, Y. and Liu, Y., 2021, Materials for hydrogen mobile storage applications, IOP Conference Series: Earth and Environmental Science, Vol. 632, No. 5, IOP Publishing.
  51. Zhao, X. Y. and Ma, L. Q., 2009, Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries, International Journal of Hydrogen Energy,Vol. 34, No. 11, pp. 4788-4796. https://doi.org/10.1016/j.ijhydene.2009.03.023
  52. Zhu, X. H. and Wang, R. M., 2000, The hydrogen carrying functions of hydrogen storage materials, 13th World Hydrogen Energy Conference, Beijing, Peoples R China, pp. 1098-1102.