• 제목/요약/키워드: co-production

검색결과 5,450건 처리시간 0.034초

동치미의 발효중 $CO_2$ 발생특성 ($CO_2$ Production in Fermentation of Dongchimi (Pickled Radish Roots, Watery Radish Kimchi))

  • 이동선;이영순
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1021-1027
    • /
    • 1997
  • $CO_2$production in fermentation of dongchimi was measured and interrelated with changes in pH and titratable acidity. The effects of salt content and temperature on $CO_2$production rate were analysed. Fermentation of dongchimi showed drastic pH decrease in early stage and subsequent levelling off around 3.9, with linearly increased acidity up to 0.3~0.4% optimum quality. $CO_2$production of dongchimi could be analysed to consist of two consecutive stages of constant rate. The first stage $CO_2$production of higher rate moved to the second stage of lower rate when acidity rose beyond 0.3%. When compared to those of 1 and 2% salt content, dongchimi of 3% salt showed lower $CO_2$production rate in the 1st stage and slower acidity change through the whole fermentation period. However, it resulted in the product of highest $CO_2$accumulation at optimal ripeness because of consistent $CO_2$production of longer 1st stage period and relatively high $CO_2$production rate in 2nd stage. $CO_2$production depended on temperature less compared to acidity change(activation energy: 57.3 and 44.3kJ/mol for $CO_2$production of 1st and 2nd stages, respectively; 79.3kJ/mol for acidity change), which means higher ratio of $CO_2$production rate relative to acidity increase at lower temperature. Slower increase in acidity at low temperature also was shown to extend the period of 1st stage $CO_2$production. Therefore, low temperature fermentation was effective in producing the high $CO_2$content dongchimi at adequate acidity, which is desirable organoleptically.

  • PDF

Effects of pH and Light Irradiation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Dao, Van Thingoc;Kien, Ngyuen;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제11권4호
    • /
    • pp.219-223
    • /
    • 2008
  • To increase the level of $CoQ_{10}$ production in mass culture, the effects of pH and light irradiation on $CoQ_{10}$ production by Rhodobacter sphaeroides were investigated in a 1-L bioreactor. $CoQ_{10}$ production was growth-associated, and the highest production of $CoQ_{10}$ (1.69 mg/g dry cell) was obtained under uncontrolled pH: this production was 1.7 times higher than that obtained at controlled pH 7. Therefore, pH was a key factor affecting $CoQ_{10}$ production. The effect of light irradiation on $CoQ_{10}$ production was negligible. This result offers an advantage for mass production of $CoQ_{10}$.

A Case Study on the Diversity of International Co-produced Drama

  • Kim, Youn-Sung;Kim, Tae-Yang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.64-73
    • /
    • 2020
  • The importance of international co-production that enables content production, diversification of overseas markets, and diversification has been highlighted as demand for content has soared due to intensifying competition between media outlets, while contents provision has become easier due to changes in media environment such as convergence of broadcasting and communication and the spread of mobile Internet. In particular, the boom in Korean dramas, called the Korean Wave in China, opened up a new market after "My Love from the Star" in 2014, and in 2016, Netflix's entry into Korea served as an opportunity for local broadcasters and producers to seek international co-production. In addition, "Good Doctor" which was aired on American Broadcasting Co. (ABC) in 2017, has topped the same time slot for the first time in 29 years, and is set to air season 4 this fall. Accordingly, overseas broadcasters and production companies wanted to collaborate with domestic broadcasters and producers, and since 2011, they have conducted a total of 12 co-produced dramas until 2019. Unfortunately, however, there are few studies related to international co-production dramas in the domestic industry and academia. In this paper, we present to help Korea, which used to be a powerhouse in complete export-type content, move toward becoming a powerhouse in international co-produced dramas. In addition, it is meaningful that the research focused on the current status and achievements of international co-production dramas, which have not been studied much, and the diversity of international co-production dramas in the future through the analysis of the form and structure of international co-production.

Effect of Aeration-Agitation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제11권4호
    • /
    • pp.224-228
    • /
    • 2008
  • With the aim of increasing the $CoQ_{10}$ production in mass culture, the effect of aeration-agitation on the $CoQ_{10}$ production using Rhodobactor sphaeroides was investigated in a l-L bioreactor. The maximum $CoQ_{10}$ production was 1.69 mg/g of dry cell weight under conditions of 50 Lux, $30^{\circ}C$, 300 rpm, and 5-vvm aeration. The $CoQ_{10}$ production was improved to produce 2.91 mg/g of dry cell weight under reduced conditions of agitation speed (200 rpm) and aeration rate (0.2 vvm). When R. sphaeroides was cultivated under more reduced DO levels during the exponential phase of the cell, the $CoQ_{10}$ production yield of 3.88-mg/g dry cell weight was the maximum obtained. Therefore, poorer conditions of aeration-agitation resulted in higher production of $CoQ_{10}$, and thus DO content was a crucial factor in the production of $CoQ_{10}$. Accordingly, it was necessary to control the DO concentration in order to enhance the $CoQ_{10}$ biosynthesis within a large-scale production.

The effect of nuclear energy on the environment in the context of globalization: Consumption vs production-based CO2 emissions

  • Danish, Danish;Ulucak, Recep;Erdogan, Seyfettin
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1312-1320
    • /
    • 2022
  • The earlier studies have analyzed theoretical links between nuclear energy and carbon dioxide (CO2) emissions concerning territorial (or production-based) emissions. Here using the latest available dataset, this study explores the impacts of nuclear energy on production-based and consumption-based CO2 emission in the era of globalization for the Organization for Economic Co-operation and Development (OECD) countries. The Driscoll-Kraay regression method reveals that nuclear energy is beneficial for the reduction of production-based CO2 emissions. However, it is revealed that nuclear energy does not reduce consumption-based CO2 emissions that are traded internationally and hence not comprised in conventional production-based emissions (territory) inventories. Globalization tends to reduce both production-based and demand-based carbon emissions. Finally, Environmental Kuznets Curve (EKC) is validated for both kinds of CO2 emissions. The findings may deliver practical policy implications related to nuclear energy and CO2 emissions for selected countries.

CoQ10 생성 세균의 선별 및 발효조건 최적화 (Optimization of Fermentation Conditions for CoQ10 Production Using Selected Bacterial Strains)

  • 정근일;강원화;이정아;신동하;배경숙;박호용;박희문
    • 미생물학회지
    • /
    • 제46권1호
    • /
    • pp.46-51
    • /
    • 2010
  • Coenzyme Q10 (CoQ10)은 전자전달계에 필수적인 요소로 질병치료 및 완화에 도움이 되어 산업 의학적으로 그 활용도가 넓어지고 있다. 본 연구에서는 새로운 CoQ10 생산균주를 선별하기 위하여 quinone 분석 결과 CoQ10을 함유하는 것으로 확인된 8종 미생물의 생장특성과 CoQ10 생산능을 1차 조사하여, 세균류인 Paracoccus denitrificans KCTC 2530과 Asaia siamensis KCTC 12914를 대량배양을 통한 CoQ10 생산에 유리한 특성을 갖는 균주로 선별하였다. 이들 세균류의 생장 및 CoQ10 생산의 최적조건을 플라스크배양으로 조사한 결과, M81 배지를 기반으로 하여 탄소원으로는 4% fructose, 질소원으로는 2% yeast extract가 가장 좋은 것으로 조사되었으며, 배양온도는 $30^{\circ}C$, 배지의 최적 pH는 P. denitrificans KCTC 2530의 경우 pH 6.0, A. siamensis KCTC 12914의 경우 pH 8.0으로 조사되었다. 이를 바탕으로 2 L fed-batch culture를 수행한 결과, P. denitrificans KCTC 2530은 1 L 당 $14.34{\pm}0.473$ mg, A. siamensis KCTC 12914는 $12.53{\pm}0.231$ mg의 CoQ10을 생산하였다.

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

혐기성소화의 물질분해 특성에 미치는 CO2 분압의 영향 (Effects of CO2 partial pressure on the characteristics of organic matter degradation in anaerobic digestion)

  • 김영철;엄태규;이무강;차기철;노이케 타쯔야
    • 상하수도학회지
    • /
    • 제10권4호
    • /
    • pp.111-118
    • /
    • 1996
  • Effects of $CO_2$ partial pressure($pCO_2$) on the characteristics of methane production rate and organic matter degradation in anaerobic digestion were investigated by using anaerobic chemostat type reactors at $35{\pm}1^{\circ}C$, at the HRT of 7days. The $pCO_2$ of the reactors was controlled in the range from 0.1 to 0.8 atm. Since the $pCO_2$ in an uncontrolled condition was about 0.4atm, $N_2$ was added for the reactors controlled of $pCO_2$ of between 0.1 and 0.4atm. At $pCO_2$ of 0.5 atm, the methane production rate was approximately 20% more that in an uncontrolled condition of $pCO_2$. Based on the carbon mass balance, it was concluded that methane production was related to the increment of removal organic carbon and consumption of $CO_2$. At $pCO_2$ of 0.5atm, the methane production by the increment of removal substrates increased 13.6%, on the orther hand, hand, the methane production by the conversion of $CO_2$ to methane increased 6.4%.

  • PDF

Comparing Production- and Consumption- based CO2 Emissions by Economic Growth

  • Jooman Noh;Hong Chong Cho
    • Journal of Korea Trade
    • /
    • 제26권8호
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose - Carbon emission standards are based on the "production-based carbon emissions" generated by the production of goods in the relevant country which were the existing measurement methods. However, can such carbon emissions measurement standards be established international? For example, some of the goods produced in developing countries are produced for the demand of developed countries. The method of measuring carbon emission based on the final demand of a certain country is called "consumption-based carbon emissions." This study compares productionand consumption-based CO2 emissions according to economic growth in ninety-three countries categorized by income level. Design/methodology - Our empirical model considers the difference between production- and consumption-based CO2 emissions according to economic growth. Also, our model investigated whether the EKC hypothesis in most of the previous studies that had been based on production-based emissions was also established in the consumption-based emission model. Considering the continuous characteristics of CO2, we utilized the generalized method of moments (GMM), specifically a system GMM econometric technique because CO2 in the previous period can affect CO2 in the present period. Findings - Our main findings can be summarized as follows: The results show that for the consumption-based CO2 emissions model, CO2 continuously increases as economic growth increases in the upper-middle income countries. The inverted U-shaped result was found in the case of the production-based model. However, in the lower-income countries, an inverted-U shape in which CO2 emissions decrease at some point as the economy grows in the production-based model does not appear. On the other hand, in the consumption-based model, an inverted U-shaped result was obtained when estimating with system-GMM. Additionally, the proportion of manufacturing, energy imports, and energy consumption had an effect on both the production- and the consumption-based model regardless of the group's CO2 emissions. On the basis of such assessments, policymakers need to consider not only production- but also consumption-based options. Originality/value - Previous studies have mainly focused on production-based CO2 emissions, with most of them revolving around economic growth or the effect of various social and economic factors on CO2 emissions. However, this study considers the relationship with economic growth using consumption-based emissions as a dependent variable by classifying ninety-three countries by income level.

미세조류 4종의 성장, CO2 동화 및 지질 생성 특성 (Characterization of Cellular Growth, CO2 Assimilation and Neutral Lipid Production for 4 Different Algal Species)

  • 신채윤;노영진;정소연;김태관
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.547-555
    • /
    • 2020
  • 미세조류는 효율적으로 바이오매스를 증가시킬 수 있으며 유용한 생물학적 자원들을 축적할 수 있기 때문에 에너지 및 식품 생산 등 다양한 분야에서 유망한 자원으로써 주목받고 있다. 본 연구에서는 4종의 미세조류(Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., Coelastrella vacuolata)를 선정하여 이들의 성장, CO2 동화, CO2 농도에 따른 미세조류의 지질 생성 특성을 분석하였다. 각 미세조류의 크기는 C. vulgaris가 가장 작았으며, M. homosphaera, C. vacuolata, Coelastrella sp. 순으로 큰 크기를 나타냈다. C. vulgaris는 다른 3종의 미세조류와 비교해서 크기가 가장 작으며 성장과 CO2 동화 속도가 가장 빠르게 나타났다. 또한, 초기 바이오매스가 증가함에 따라 CO2 동화 속도는 최대 9.62 mmol·day-1·l-1를 나타냈으며, 다른 3종의 미세조류(약 3 mmol·day-1·l-1)보다 3배 이상 높은 CO2 동화 속도를 보여주었다(p < 0.05). M. homosphaera를 제외하고 3종의 미세조류는 CO2 농도와 CO2 동화 비속도 사이에 양의 상관관계(positive correlation)를 나타냈다. 특히, C. vulgaris는 다른 3종의 미세조류와 비교해 더 높은 CO2 동화 비속도를 보여주었다(14.6 vs. ≤ 11.9 mmol·day-1·l-1). 4종의 미세조류는 CO2 농도가 증가함에 따라 지질 함량이 증가했으며 그 중에서 C. vulgaris는 최대 18 mg·l-1를 나타내 다른 3종의 미세조류(최대 12 mg·l-1)보다 최소 50% 이상 높은 지질 함량을 보여주었다. 4종의 미세조류 중 C. vulgaris가 효율적으로 CO2를 동화하며 다른 미세조류보다 높은 바이오매스와 지질 생산이 가능함을 시사한다.