Browse > Article
http://dx.doi.org/10.48022/mbl.2008.08017

Characterization of Cellular Growth, CO2 Assimilation and Neutral Lipid Production for 4 Different Algal Species  

Shin, Chae Yoon (Department of Microbiology, Pusan National University)
Noh, Young Jin (Department of Microbiology, Pusan National University)
Jeong, So-Yeon (Department of Microbiology, Pusan National University)
Kim, Tae Gwan (Department of Microbiology, Pusan National University)
Publication Information
Microbiology and Biotechnology Letters / v.48, no.4, 2020 , pp. 547-555 More about this Journal
Abstract
Microalgae are a promising resource in energy and food production as they are cost-effective for biomass production and accumulate valuable biological resources. In this study, CO2 assimilation, biomass, and lipid production of 4 microalgal species (Chlorella vulgaris, Mychonastes homosphaera, Coelastrella sp., and Coelastrella vacuolata) were characterized at different CO2 concentrations ranging from 1% to 9%. Microscopic observation indicated that C. vulgaris was the smallest, followed by M. homosphaera, C. vacuolata, and Coelastrella sp. in order of size. C. vulgaris grew and consumed CO2 more rapidly than any other species. C. vulgaris exhibited a linear increase in CO2 assimilation (up to 9.62 mmol·day-1·l-1) as initial biomass increased, while the others did not (up to about 3 mmol·day-1·l-1). C. vulgaris, Coelastrella sp., and C. vacuolata showed a linear increase in the specific CO2 assimilation rate with CO2 concentration, whereas M. homosphaera did not. Moreover, C. vulgaris had a greater CO2 assimilation rate compared to those of the other species (14.6 vs. ≤ 11.9 mmol·day-1·l-1). Nile-red lipid analysis showed that lipid production per volume increased linearly with CO2 concentration in all species. However, C. vulgaris increased lipid production to 18 mg·l-1, compared to the 12 mg·l-1 produced by the other species. Thus, C. vulgaris exhibited higher biomass and lipid production rates with greater CO2 assimilation capacity than any other species.
Keywords
Microalgae; biomass; $CO_2$ assimilation; lipid production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T. 2012. Presented at the Proceedings of the world congress on engineering.
2 Dimitrova P, Marinova G, Alexandrov S, Iliev I, Pilarski P. 2017. Presented at the Youth Scientific Conference, Sofia 2016.
3 Lakshmikandan M, Murugesan A, Wang S, Abomohra AE-F, Jovita PA, Kiruthiga S. 2020. Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J. Clean. Prod. 247: 119398.   DOI
4 Griffiths MJ, Harrison ST. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507.   DOI
5 Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G. 2013. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139: 149-154.   DOI
6 Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804.   DOI
7 Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sust. Energ. Rev. 35: 265-278.   DOI
8 Sun L-Y, Cui W-J, Chen K-M. 2018. Two Mychonastes isolated from freshwater bodies are novel potential feedstocks for biodiesel production. Energ. Source Part A. 40: 1452-1460.   DOI
9 Saadaoui I, Cherif M, Rasheed R, Bounnit T, Al Jabri H, Sayadi S, et al. 2020. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. Algal. Res. 51: 102021.   DOI
10 Hu C-W, Chuang L-T, Yu P-C, Chen C-NN. 2013. Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem. 138: 2071-2078.   DOI
11 Khoshmanesh A, Lawson F, Prince IG. 1997. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chem. Eng. 65: 13-19.   DOI
12 Mayo AW, Noike T. 1994. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water Res. 28: 1001-1008.   DOI
13 Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 77: 41-47.   DOI
14 Hanagata N, Malinsky‐Rushansky N, Dubinsky Z. 1999. Eukaryotic picoplankton, Mychonastes homosphaera (Chlorophyceae, Chlorophyta), in Lake Kinneret, Israel. Phycol Res. 47: 263-269.   DOI
15 Yamamoto M, Fujishita M, Hirata A, Kawano S. 2004. Regeneration and maturation of daughter cell walls in the autosporeforming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 117: 257-264.   DOI
16 Goecke F, Noda J, Paliocha M, Gislerod HR. 2020. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J. Microbiol. Biotechnol. 36: 149.   DOI
17 Sunda WG, Huntsman SA. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390: 389-392.   DOI
18 Chen F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421-426.   DOI
19 Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg. 66: 204-213.   DOI
20 Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2020. Two-phase method of cultivating Coelastrella species for increased production of lipids and carotenoids. Bioresour. Technol. Rep. 9: 100366.   DOI
21 Singh S, Singh P. 2014. Effect of CO2 concentration on algal growth: a review. Renew. Sust. Energ. Rev. 38: 172-179.   DOI
22 Abou-Shanab RA, Hwang J-H, Cho Y, Min B, Jeon B-H. 2011. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energ. 88: 3300-3306.   DOI
23 Ahmad A, Yasin NM, Derek C, Lim J. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15: 584-593.   DOI
24 Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P. 2015. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Bioresour. Technol. 188: 177-184.   DOI
25 Sung K-D, Lee J-S, Shin C-S, Park S-C, Choi M-J. 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour. Technol. 68: 269-273.   DOI
26 Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry. 31: 3345-3348.   DOI
27 Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102: 71-81.   DOI
28 Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14: 217-232.   DOI
29 Williams PJlB, Laurens LM. 2010. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energ. Environ. Sci. 3: 554-590.   DOI
30 Shetty P, Gitau MM, Maroti G. 2019. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8: 1-16.   DOI
31 Kumar SJ, Kumar GV, Dash A, Scholz P, Banerjee R. 2017. Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal. Res. 21: 138-147.   DOI
32 Leong YK, Chang J-S. 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 303: 122886.   DOI
33 Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28: 371-380.   DOI
34 Zeng X, Danquah MK, Chen XD, Lu Y. 2011. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sust. Energ. Rev. 15: 3252-3260.   DOI
35 Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, et al. 2019. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 291: 121934.   DOI