DOI QR코드

DOI QR Code

Effect of Aeration-Agitation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Kim, Joong-Kyun (Department of Biotechnology and Bioengineering, Pukyong National University)
  • 발행 : 2008.12.31

초록

With the aim of increasing the $CoQ_{10}$ production in mass culture, the effect of aeration-agitation on the $CoQ_{10}$ production using Rhodobactor sphaeroides was investigated in a l-L bioreactor. The maximum $CoQ_{10}$ production was 1.69 mg/g of dry cell weight under conditions of 50 Lux, $30^{\circ}C$, 300 rpm, and 5-vvm aeration. The $CoQ_{10}$ production was improved to produce 2.91 mg/g of dry cell weight under reduced conditions of agitation speed (200 rpm) and aeration rate (0.2 vvm). When R. sphaeroides was cultivated under more reduced DO levels during the exponential phase of the cell, the $CoQ_{10}$ production yield of 3.88-mg/g dry cell weight was the maximum obtained. Therefore, poorer conditions of aeration-agitation resulted in higher production of $CoQ_{10}$, and thus DO content was a crucial factor in the production of $CoQ_{10}$. Accordingly, it was necessary to control the DO concentration in order to enhance the $CoQ_{10}$ biosynthesis within a large-scale production.

키워드

참고문헌

  1. Ernster, L. and G. Dallner. 1995. Biochemical, physiologi-cal and medical aspects of ubiquinone function. Biochim. Biophys. Acta, 1271, 195-204 https://doi.org/10.1016/0925-4439(95)00028-3
  2. Gale, P.H., F.R. Koniuszy, A.G. Page Jr. and K. Folkers. 1961. Coenzyme Q. XXIV. On the significance of coenzyme $Q_{10}$ in human tissues. Arch. Biochem. Biophys., 93, 211-213 https://doi.org/10.1016/0003-9861(61)90251-X
  3. Grant, C.M., F.H. Maclver and I.W. Dawes. 1997. Mito-chondrial function is required for resistance to oxida-tive stress in the yeast Saccharomyces cerevisiae. FEBS Lett., 410, 219-222 https://doi.org/10.1016/S0014-5793(97)00592-9
  4. Gu, S.B., J.M. Yao, Q.P. Yuan, P.J. Xue, Z.M. Zheng and Z.L. Yu. 2006. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochem., 41, 1908-1912 https://doi.org/10.1016/j.procbio.2006.04.002
  5. Ha, S.J., S.Y. Kim, J.H. Seo, H.J. Moon, K.M. Lee and J.K. Lee. 2007. Controlling the sucrose concentration in-creases Coenzyme $Q_{10}$ production in fed-batch cul-ture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol., 76, 109-116 https://doi.org/10.1007/s00253-007-0995-8
  6. James, A.M., R.A.J. Smith and M.P. Murphy. 2004. Anti-oxidant and prooxidant properties of mitochondrial coenzyme Q. Arch. Biochem. Biophys., 423, 47-56 https://doi.org/10.1016/j.abb.2003.12.025
  7. Jeong, S.K., S.C. Ahn, I.S. Kong and J.K. Kim. 2008. Isolation and identification of a photosynthetic bac-terium containing high content of coenzyme $Q_{10}$. J. Fish. Sci. Technol., 11,172-176 https://doi.org/10.5657/fas.2008.11.3.172
  8. Kokua, H., I. Eroglu, U. Gunduz, M. Yucel and L. Turker. 2003. Aspects of the metabolism of hydrogen pro-duction by Rhodobacter sphaeroides. Int. J. Hydrogen Energy, 27, 1315-1329
  9. Kuratu, Y., M. Sakurai, H. Hagino and K. Inuzuka. 1984. Aeration-agitation effect on coenzyme $Q_{10}$ production by Agrobacterium species. J. Ferment. Technol., 62, 305-308
  10. Lee, J.K., G. Her, S.Y. Kim and J.H. Seo. 2004. Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol. Prog., 20, 51-56 https://doi.org/10.1021/bp034213e
  11. Lipshutz, B.H., P. Mollard, S.S. Pfeiffer and W. Chrisman. 2002. A short, highly efficient synthesis of coenzyme $Q_{10}$. J. Am. Chem. Soc., 124, 14282-14283 https://doi.org/10.1021/ja021015v
  12. Matsumura, M., T. Kobayashi and S. Aiba. 1983. Anaero-bic production of ubiquinone-10 by Paracoccus den-trificans. Eur. J. Appl. Microbiol. Biotechnol., 17, 85-89 https://doi.org/10.1007/BF00499856
  13. Nagadomi, H., T. Kitamura, M. Watanabe and K. Sasaki. 2000. Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and hydrogen sulphide in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria. Biotechnol. Lett., 22, 1369-1374 https://doi.org/10.1023/A:1005688229783
  14. Negishi, E., S.Y. Liou, C. Xu and S. Huo. 2002. A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme $Q_{10}$. Org. Lett., 4, 261-264 https://doi.org/10.1021/ol010263d
  15. Park, Y.C., S.J. Kim, J.H. Choi, W.H. Lee, K.M. Park, M. Kawamukai, Y.W. Ryu and J.H. Seo. 2005. Batch and fed-batch production of coenzyme $Q_{10}$ in recombinant Escherichia coli containing the decaprenyl diphos-phate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol., 67, 192-196 https://doi.org/10.1007/s00253-004-1743-y
  16. Sasaki, K, T. Tanaka and S. Nagai. 1998. Use of photo-synthetic bacteria for production of SCP and chemi-cals from organic wastes. In: Bioconversion of waste materials to industrial products (2nd Edition). Martin, A.M., Ed. Blackie Academic and Professionals, New York, 247-291
  17. Sasaki, K., M. Watanabe, Y. Suda, A. Ishizuka and N. Noparatnaraporn. 2005. Applications of photosynthe-tic bacteria for medical fields. J. Biosci. Bioeng., 100, 481-488 https://doi.org/10.1263/jbb.100.481
  18. Saunders, V.A. and O.T.G. Jones. 1974. Properties of the cytochrome a-like material developed in the photosynthetic bacterium Rhodopseudomonas spheroides when grown aerobically. BBA- Bio-energetics, 333, 439-445 https://doi.org/10.1016/0005-2728(74)90128-5
  19. Takahashi, S., T. Nishino and T. Koyama. 2003. Isolation and expression of Paracoccus dentrificans decaprenyl diphosphate synthase gene for production of ubi-quinone-10 in Escherichia coli. Biochem. Eng. J., 16, 183-190 https://doi.org/10.1016/S1369-703X(03)00035-4
  20. Takeno, K., K. Sasaki and N. Nishio. 1999. Removal of phosphorus from oyster farm mud sediment using a photosynthetic bacterium, Rhodobacter sphaeroides IL106. J. Biosci. Bioeng., 88, 410-415 https://doi.org/10.1016/S1389-1723(99)80218-7
  21. Urakami, T. and T. Yoshida. 1993. Production of ubi-quinone and bacteriochlorophyll $\alpha$ by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. J. Fer-ment. Bioeng., 76, 191-194 https://doi.org/10.1016/0922-338X(93)90006-T
  22. Wu, Z., G. Du and J. Chen. 2003. Effects of dissolved oxygen concentration and DO-stat feeding strategy on Co$Q_{10}$ production with Rhizobium radiobacter. World J. Microbiol. Biotechnol., 19, 925-928 https://doi.org/10.1023/B:WIBI.0000007322.19802.57
  23. Wu, Z.F., P.F. Weng, G.C. Du and J. Chen. 2001. Advances of coenzyme $Q_{10}$ function studies. J. Ningbo Univ., 2, 85-88
  24. Yamada, Y., K. Haneda, S. Murayama and S. Shiomi. 1991. Application of fuzzy control system fermentation. J. Chem. Eng., 24, 94-99 https://doi.org/10.1252/jcej.24.94
  25. Yen, H.W. and C.H. Chiu. 2007. The influences of aerobic-dark and anaerobic-light cultivation on Co$Q_{10}$ production by Rhodobacter sphaeroides in the submerged fermenter. Enzyme Microb. Technol., 41, 600-604 https://doi.org/10.1016/j.enzmictec.2007.05.005
  26. Zhang, D., B. Shrestha, W. Niu, P. Tian and T. Tan. 2007. Phenotypes and fed-batch fermentation of ubiquin-one-overproducing fission yeast using ppt1 gene. J. Biotechnol., 128, 120-131 https://doi.org/10.1016/j.jbiotec.2006.09.012