• Title/Summary/Keyword: cnt paper

Search Result 204, Processing Time 0.025 seconds

Characterization of high performance CNT-based TSV for high-frequency RF applications

  • Kannan, Sukeshwar;Kim, Bruce;Gupta, Anurag;Noh, Seok-Ho;Li, Li
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • In this paper, we present modeling and characterization of CNT-based TSVs to be used in high-frequency RF applications. We have developed an integrated model of CNT-based TSVs by incorporating the quantum confinement effects of CNTs with the kinetic inductance phenomenon at high frequencies. Substrate parasitics have been appropriately modeled as a monolithic microwave capacitor with the resonant line technique using a two-polynomial equation. Different parametric variations in the model have been outlined as case studies. Furthermore, electrical performance and signal integrity analysis on different cases have been used to determine the optimized configuration for CNT-based TSVs for high frequency RF applications.

Carbon Nanotube Gate-Elongated Tunneling Field Transistor(CNT G-E TFET) to Reduce Off-Current

  • Heo, Jae;Jeon, Seung-Bae
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.240-242
    • /
    • 2013
  • In this paper, novel Carbon Nanotube Gate-Elongated Tunneling Field Transistor(CNT G-E TFET) is proposed. This proposed device is designed to decrease off-current around 2~6 orders of magnitude compared to the gate-channel size matched TFET. Mechanism of CNT G-E TFET creates additional steps in energy band structure so that off-current can be reduced. Since CNT TFETs show a great probability for tunneling processes and they are beneficial for the overall device performance in terms of switching speed and power consumption, CNT G-E TFET looks pretty much promising.

  • PDF

Study on the Thermal Properties of Semiconductive Shield Materials using CNT/EEA (CNT/EEA를 사용한 반도전 재료의 열안정성에 관한 연구)

  • Yang, Hoon;Yang, Jong-Seok;Kook, Jeong-Ho;Bang, Jeong-Hwan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.223-224
    • /
    • 2007
  • In this paper, we investigated resistant immunity of semiconductive shield materials in power cables' ordinary operation temperature. It used EEA(Ethylene Ethyl Acrylate) in base polymer and measured TGA(Thermal Gravimetric Analysis) in controlling contents. It increased pyrolysis temperature in content increasement of CNT(Carbon Nanotubes). As a result, we knew superiority that CNT:CB is 10:0.

  • PDF

Prediction of Thermo-mechanical Behavior for CNT/epoxy Composites Using Molecular Dynamics Simulation (분자동역학 시뮬레이션을 이용한 CNT/에폭시 복합재의 열기계적 거동 예측)

  • Choi, Hoi Kil;Jung, Hana;Yu, Jaesang;Shin, Eui Sup
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.260-264
    • /
    • 2015
  • In this paper, molecular dynamics (MD) simulation was carried to predict thermo-mechanical behaviors for carbon nanotube (CNT) reinforced epoxy composites and to analyze the trends. Total of six models having the volume fractions of CNT from 0 to 25% in epoxy were constructed. To predict thermal behaviors, temperature was increased constantly from 300 to 600 K, and the glass transition temperature ($T_g$) and coefficient of thermal expansion (CTE) analyzed using the relationship between temperature and specific volume. The elastic moduli that represented to the mechanical behaviors were also predicted by constant strain. Additionally, the effects of functionalization of CNT on mechanical behaviors of composite were analyzed. Models were constructed to represent CNTs functionalized by nitrogen doping and COOH groops, and interfacial behaviors and elastic moduli were analyzed. Results showed that the agglomerations of CNTs in epoxy cause by perturbations of thermo-mechanical behaviors, and the functionalization of CNTs improved the interfacial response as well as mechanical properties.

Integrated Experimental-Numerical Approach to Investigate the Heat Transferring Effect of Carbon Nanotube on the Concrete Slab (실내실험 및 수치해석을 통한 Carbon Nanotube의 콘크리트슬래브 열전달 효과 검증)

  • Kim, Hee Su;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • This paper presents a method to deice concrete pavement with carbon nanotube(CNT) as an heating material so as to avoid the adverse effects of conventional deicing method such as salt on the structure, function and environment. To this end, laboratory tests integrated with numerical simulations were conducted. In the laboratory tests, the CNT was embedded inside the concrete slab and generated the heat up to the target temperature of $60^{\circ}C$ in the freezer at temperature of $-10^{\circ}C$. Then, the surface temperature was measured to investigate how far the heat transfers on the surface at temperature of above $0^{\circ}C$. Also, three different spacings of 15, 20 and 30cm between CNTs were conducted to determine the maximum allowable spacing of CNT. Along with these experimental tests, heat transferring analysis conducted to validate the test results.

Comparative properties for serial-parallel connection of DSC with CNT and pt counter electrodes (CNT와 Pt 상대전극을 가지는 염료감응형 태양전지의 직렬 ${\cdot}$ 병렬 연결에 따른 특성비교)

  • Choi, Jin-Young;Hong, Ji-Tae;Kim, Mi-Jeong;Lee, Yong-Chul;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.335-338
    • /
    • 2007
  • Cost effectiveness is an important parameter for producing DSSCs as compared to the widely used conventional silicon based solar cells. A fluorine-doped tin oxide (FTO) substrate coated with a catalytic amount of platinum is used as counter electrode in dye-sensitized solar cell. Carbonaceous materials are quite attractive to replace platinum due to their high electronic conductivity, corrosion resistance towards $I_{2}$, good catalytic effect and low cost. In this paper, the unit DSSCs with Pt and CNT as a counter electrode were connected in series-parallel externally, then the current-voltage curves were investigated to find out the connection characteristics of the DSSC with CNT counter electrode. The connection characteristics of the DSSC with CNT counter electrode is superior to that of the DSSC with Pt counter electrode. And a parallel connection of the DSSC with CNT counter electrode has higher efficiency than a series connection of that.

  • PDF

Improvement of Piezoelectric Performance of the CNT/PVDF Composite Film by Enhancing Conductivity of the PEDOT:PSS Electrodes (PEDOT:PSS 전극의 전도도향상에 의한 CNT/PVDF 복합막의 압전성능 개선)

  • Lim, Young-Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.716-719
    • /
    • 2016
  • In this paper, we fabricated flexible CNT/PVDF (carbon nanotube / polyvinylidene fluoride) piezoelectric composite device with flexible poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT:PSS) conducting polymer electrode using spray coating method. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by enhancing electrical conductivity of the PEDOT:PSS electrodes. Electrical conductivity of the PEDOT:PSS electrode was enhanced by dipping it into the EG (ethylene glycol) solvent. Changes of chemical composition of the PEDOT:PSS electrode were analyzed with the dipping time by XPS (x-ray photoelectron spectroscopy) in terms of oxygen (O1s). Finally, Piezoelectric performances such as output voltage and current were measured with the dipping time. We found that enhanced electrical conductivity of the PEDOT:PSS electrodes resulted in improvement of the piezoelectric performance of the CNT/PVDF films.

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

The Characteristics Analysis of substitute LED and CNT Lighting for fluorescent lamp (형광등 대체용 LED조명과 CNT조명에 대한 전기적.광학적특성의 비교고찰)

  • Hwang, M.K.;Lim, J.M.;Shin, S.W.;Rho, J.Y.;Cho, M.R.;Lee, S.H.;Jeon, S.K.;Choi, S.J.;Yi, C.W.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.205-208
    • /
    • 2008
  • In this paper, we have measured and compared the optical and electrical characteristics of LED(light emitting diode) and CNT(carbon nano-tube) lightings. Especially, the IES format files are used for each of the luminaire LlD(luminous intensity distribution) analysis and light level simulation for analyze the maximum, minimum, and average light level. In the future, when CNT and the LED based lighting technology standards are writing, this data will be used in judging.

  • PDF

Electrical and Mechanical Properties of CNT-filled Solderable Electrically Conductive Adhesive (탄소나노튜브 함유 Solderable 도전성 접착제의 전기적/기계적 접합특성 평가)

  • Yim, Byung-Seung;Jeong, Jin-Sik;Lee, Jeong-Il;Oh, Seung-Hoon;Kim, Jong-Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.37-42
    • /
    • 2011
  • In this paper, novel carbon nanotube (CNT)-filled Solderable electrically conductive adhesive (ECA) and joining process have been developed. To investigate the bonding characteristics of CNT-filled Solderable ECA, three types of Solderable ECAs with different CNT weight percent (0, 0.1, 1wt%) were formulated. For a joining process, the quad flat package (QFP) chip was used. The QFP chip had a size of $14{\times}14{\times}2.7$ mm and a 1 mm lead pitch. The test board had a Cu daisy-chained pattern with 18 ${\mu}m$ thick. After the bonding process, the bonding characteristics such as morphology of conduction path, electrical resistance and pull strength were measured for each formulated ECAs. As a result, the electrical and mechanical bonding characteristics for a QFP joints using CNT-filled ECA were improved about 10% compared to those of QFP joints using ECA without CNT.