• 제목/요약/키워드: clusters: dynamics

검색결과 84건 처리시간 0.026초

Molecular Dynamics Simulations of Small n-Alkane Clusters in a Mesoscopic Solvent

  • Ko, Seo-Young;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.771-776
    • /
    • 2003
  • The structural and dynamic properties of small n-alkane clusters embedded in a mesoscopic solvent are investigated. The solvent interactions are taken into account through a multi-particle collision operator that conserves mass, momentum and energy and the solvent dynamics is updated at discrete time intervals. The cluster molecules interact among themselves and with the solvent molecules through intermolecular forces. The properties of n-heptane and n-decane clusters interacting with the mesoscopic solvent molecules through repulsive Lennard-Jones interactions are studied as a function of the number of the mesoscopic solvent molecules. Modifications of both the cluster and solvent structure as a result of cluster-solvent interactions are considered. The cluster-solvent interactions also affect the dynamics of the small n-alkane clusters.

분자동역학을 이용한 흑연 위에서의 2종 합금 나노입자의 확산 거동 연구 (Molecular Dynamics Simulations of the Diffusion of Bimetallic Nanoclusters Supported on Graphite)

  • 박준우;이주성;민찬호;이현석;류지훈;서동화;이혁모
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.461-465
    • /
    • 2009
  • We study the diffusion of Ag based bimetallic nanoclusters supported on graphite. Using a molecular dynamics simulation, we reveal that the Ag clusters show rapid diffusion because of their hexagonal bottom layer. In order to decrease the rate of diffusion, we added Pt and Ni to distort the structure of the alloy cluster (i.e., the alloying method). We expected Pt to provide a stronger force on Ag atoms, and Ni to shorten the bond length and thereby change the structure of Ag cluster. However, the attempt was unsuccessful, because Pt and Ni atoms formed cores inside the Ag clusters. We therefore designed a collision system where large Ag clusters collide with small Pt or Ni clusters. Upon collision with Pt clusters, the diffusion showed little change, because Pt atoms are substituted at the Ag atomic site and form a perfectly ordered structure. The collision with Ni, however, deforms the bottom layer as well as the overall cluster structure and decreases diffusion. This outcome appoints toward the possibility of further application to the manufacture of durable nanocatalysts.

DYNAMICAL EVOLUTION OF THE MULTI-MASS COMPONENT GLOBULAR CLUSTERS UNDER THE TIDAL INTERACTION WITH THE GALAXY

  • KIM YOUNG KWANG;OH KAP SOO
    • 천문학회지
    • /
    • 제32권1호
    • /
    • pp.17-39
    • /
    • 1999
  • We investigate dynamical evolution of globular clusters with multi-mass component under the Galactic tidal field. We compare the results with our previous work which considered the cases of single-mass component m the globular clusters. We find the followings: 1) The general evolutions are similar to the cases of single-mass component. 2) There is no evidence for dependence on the orbital phase of the cluster as in the case of single-mass component. 3) The escape rate in multi-mass models is larger than that in the single-mass models. 4) The mass-function depends on radius more sensitively in anisotropic models than in isotropic models.

  • PDF

분자운동력학법에 의한 분자괴의 표면현상 (Surface Phenomena of Molecular Clusters by Molecular Dynamics Method)

  • Maruyama, Shigeo;Matsumoto, Sohei;Ogita, Akihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.11-18
    • /
    • 1996
  • Liquid droplets of water and argon surrounded by their vapor have been simulated by the milecular dynamics method. To explore the surface phenomena of clusters, each molecule is classified into 'liquid', 'surface', or 'vapor' with respect to the number of neighbor molecules. The contribution of a 'surface' molecule of the water cluster to the far infrared spectrum is almist the same as that of the 'liquid' molecule. Hence, the liquid-vapor interface is viewed as geometrically and temporally varying boundary of 'liquid' molecules with only a single layer of 'surface' molecules that might have different characteristics from the 'liquid' molecules. The time scale of the 'phase change' of each molecule is estimated for the argon cluster by observing the instantancous kinetic and potential energies of each molecule. To compare the feature of clusters with macroscopic droplets, the temperature dependence of the surface tension of the argon cluster is estimated.

  • PDF

Molecular dynamics simulation of primary irradiation damage in Ti-6Al-4V alloys

  • Tengwu He;Xipeng Li;Yuming Qi;Min Zhao;Miaolin Feng
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1480-1489
    • /
    • 2024
  • Displacement cascade behaviors of Ti-6Al-4V alloys are investigated using molecular dynamics (MD) simulation. The embedded atom method (EAM) potential including Ti, Al and V elements is modified by adding Ziegler-Biersack-Littmark (ZBL) potential to describe the short-range interaction among different atoms. The time evolution of displacement cascades at the atomic scale is quantitatively evaluated with the energy of primary knock-on atom (PKA) ranging from 0.5 keV to 15 keV, and that for pure Ti is also computed as a comparison. The effects of temperature and incident direction of PKA are studied in detail. The results show that the temperature reduces the number of surviving Frenkel pairs (FPs), and the incident direction of PKA shows little correlation with them. Furthermore, the increasing temperature promotes the point defects to form clusters but reduces the number of defects due to the accelerated recombination of vacancies and interstitial atoms at relatively high temperature. The cluster fractions of interstitials and vacancies both increase with the PKA energy, whereas the increase of interstitial cluster is slightly larger due to their higher mobility. Compared to pure Ti, the presence of Al and V is beneficial to the formation of interstitial clusters and indirectly hinders the production of vacancy clusters.

TIDAL TAILS OF GLOBULAR CLUSTERS

  • YIM KI-JEONG;LEE HYUNG MOK
    • 천문학회지
    • /
    • 제35권2호
    • /
    • pp.75-85
    • /
    • 2002
  • We present N-body simulations of globular clusters including gravitational field of the Galaxy, in order to study effects of tidal field systematically on the shape of outer parts of globular clusters using NBODY6. The Galaxy is assumed to be composed of central bulge and outer halo. We mvestigate the cluster of multi-mass models with a power-law initial mass function (IMF) starting with different initial masses, initial number of particles, different slopes of the IMF and different orbits of the cluster. We have examined the general evolution of the clusters, the shape of outer parts of the clusters, density profiles and the direction of tidal tails. The density profiles appear to become somewhat shallower just outside the tidal boundary consistent with some observed data. The position angle of the tidal tall depends on the location in the Galaxy as well as the direction of the motion of. clusters. We found that the clusters become more elongated at the apogalacticon than at the pengalacticon. The tidal tails may be used to trace the orbital paths of globular clusters.

Primary damage of 10 keV Ga PKA in bulk GaN material under different temperatures

  • He, Huan;He, Chaohui;Zhang, Jiahui;Liao, Wenlong;Zang, Hang;Li, Yonghong;Liu, Wenbo
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1537-1544
    • /
    • 2020
  • Molecular dynamics (MD) simulations were conducted to investigate the temperature effects on the primary damage in gallium nitride (GaN) material. Five temperatures ranging from 300 K to 900 K were studied for 10 keV Ga primary knock-on atom (PKA) with inject direction of [0001]. The results of MD simulations showed that threshold displacement energy (Ed) was affected by temperatures and at higher temperature, it was larger. The evolutions of defects under various temperatures were similar. However, the higher temperature was found to increase the peak number, peak time, final time and recombination efficiency while decreasing the final number. With regard to clusters, isolated point defects and little clusters were common clusters and the fraction of point defects increased with temperature for vacancy clusters, whereas it did not appear in the interstitial clusters. Finally, at each temperature, the number of Ga interstitial atoms was larger than that of N and besides that, there were other different results of specific types of split interstitial atoms.

ReaxFF and Density Functional Theory Studies of Structural and Electronic Properties of Copper Oxide Clusters

  • Baek, Joo-Hyeon;Bae, Gyun-Tack
    • 대한화학회지
    • /
    • 제64권2호
    • /
    • pp.61-66
    • /
    • 2020
  • In this study, we investigate the structural and electronic properties of copper oxide clusters, CunOn (n = 9 - 15). To find the lowest energy structures of copper oxide clusters, we use ReaxFF and density functional theory calculations. We calculate many initial copper oxide clusters using ReaxFF quickly. Then we calculate the lowest energy structures of copper oxide clusters using B3LYP/LANL2DZ model chemistry. We examine the atomization energies per atom, average bond angles, Bader charges, ionization potentials, and electronic affinities of copper oxide clusters. In addition, the second difference in energies is investigated for relative energies of copper oxide clusters.

Molecular dynamics simulations of the coupled effects of strain and temperature on displacement cascades in α-zirconium

  • Sahi, Qurat-ul-ain;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.907-914
    • /
    • 2018
  • In this article, we conducted molecular dynamics simulations to investigate the effect of applied strain and temperature on irradiation-induced damage in alpha-zirconium. Cascade simulations were performed with primary knock-on atom energies ranging between 1 and 20 KeV, hydrostatic and uniaxial strain values ranging from -2% (compression) to 2% (tensile), and temperatures ranging from 100 to 1000 K. Results demonstrated that the number of defects increased when the displacement cascade proceeded under tensile uniaxial hydrostatic strain. In contrast, compressive strain states tended to decrease the defect production rate as compared with the reference no-strain condition. The proportions of vacancy and interstitial clustering increased by approximately 45% and 55% and 25% and 32% for 2% hydrostatic and uniaxial strain systems, respectively, as compared with the unstrained system, whereas both strain fields resulted in a 15-30% decrease in vacancy and interstitial clustering under compressive conditions. Tensile strains, specifically hydrostatic strain, tended to produce larger sized vacancy and interstitial clusters, whereas compressive strain systems did not significantly affect the size of defect clusters as compared with the reference no-strain condition. The influence of the strain system on radiation damage became more significant at lower temperatures because of less annealing than in higher temperature systems.

Molecular Dynamics Simulations on Melting Properties of Free Icosahedral Copper Clusters

  • Kang, Jeong-Won;Hwang, Ho-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2003
  • We have studied the size confinement effect on the properties of melting-like transition of small icosahedral copper clusters using a classical molecular dynamics simulation based on a well fitted empirical potential. We investigated the caloric curves of icosahedron nanoclusters and the significant depression in the melting temperatures of the copper nanoclusters was compared with that of the bulk copper. A structural transitions from decahedral to icosahedral shapes were shown. As the cluster size increased, the melting temperature increased, and the latent heat increased but seem to be saturated. However, the specific heat was unrelated to the cluster size.