DOI QR코드

DOI QR Code

Primary damage of 10 keV Ga PKA in bulk GaN material under different temperatures

  • He, Huan (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • He, Chaohui (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zhang, Jiahui (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liao, Wenlong (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zang, Hang (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Li, Yonghong (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liu, Wenbo (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2019.08.03
  • Accepted : 2019.12.29
  • Published : 2020.07.25

Abstract

Molecular dynamics (MD) simulations were conducted to investigate the temperature effects on the primary damage in gallium nitride (GaN) material. Five temperatures ranging from 300 K to 900 K were studied for 10 keV Ga primary knock-on atom (PKA) with inject direction of [0001]. The results of MD simulations showed that threshold displacement energy (Ed) was affected by temperatures and at higher temperature, it was larger. The evolutions of defects under various temperatures were similar. However, the higher temperature was found to increase the peak number, peak time, final time and recombination efficiency while decreasing the final number. With regard to clusters, isolated point defects and little clusters were common clusters and the fraction of point defects increased with temperature for vacancy clusters, whereas it did not appear in the interstitial clusters. Finally, at each temperature, the number of Ga interstitial atoms was larger than that of N and besides that, there were other different results of specific types of split interstitial atoms.

Keywords

References

  1. S. Pearton, GaN and ZnO-Based Materials and Devices, Springer Science & Business Media, 2012.
  2. A.P. Karmarkar, B.D. White, D. Buttari, D.M. Fleetwood, R.D. Schrimpf, R.A. Weller, L.J. Brillson, U.K. Mishra, Proton-induced damage in gallium nitride-based Schottky diodes, IEEE Trans. Nucl. Sci. 52 (2005) 2239-2244, https://doi.org/10.1109/TNS.2005.860668.
  3. M.P. Khanal, S. Uprety, V. Mirkhani, S. Wang, K. Yapabandara, E. Hassani, T. Isaacs-Smith, A.C. Ahyi, M.J. Bozack, T.-S. Oh, M. Park, Impact of 100 keV proton irradiation on electronic and optical properties of AlGaN/GaN high electron mobility transistors (HEMTs), J. Appl. Phys. 124 (2018) 215702, https://doi.org/10.1063/1.5054034.
  4. H.Y. Xiao, F. Gao, X.T. Zu, W.J. Weber, Threshold displacement energy in GaN: ab initio molecular dynamics study, J. Appl. Phys. 105 (2009) 123527, https://doi.org/10.1063/1.3153277.
  5. H.Y. Xiao, X.T. Zu, F. Gao, W.J. Weber, Ab initio calculations of structural and energetic properties of defects in gallium nitride, J. Appl. Phys. 103 (2008) 123529, https://doi.org/10.1063/1.2947604.
  6. C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-nitrides, J. Appl. Phys. 95 (2004) 3851-3879, https://doi.org/10.1063/1.1682673.
  7. M. Zerarka, P. Austin, A. Bensoussan, F. Morancho, A. Durier, TCAD simulation of the single event effects in normally-OFF GaN transistors after heavy ion radiation, IEEE Trans. Nucl. Sci. 64 (2017) 2242-2249, https://doi.org/10.1109/TNS.2017.2710629.
  8. J. Nord, K. Albe, P. Erhart, K. Nordlund, Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride, J. Phys. Condens. Matter 15 (2003) 5649, https://doi.org/10.1088/0953-8984/15/32/324.
  9. J. Nord, K. Nordlund, J. Keinonen, Molecular dynamics study of damage accumulation in GaN during ion beam irradiation, Phys. Rev. B 68 (2003) 184104, https://doi.org/10.1103/PhysRevB.68.184104.
  10. M.W. Ullah, A. Kuronen, K. Nordlund, F. Djurabekova, P.A. Karaseov, K.V. Karabeshkin, A.I. Titov, Effects of defect clustering on optical properties of GaN by single and molecular ion irradiation, J. Appl. Phys. 114 (2013) 183511, https://doi.org/10.1063/1.4829904.
  11. J. Byggmastar, F. Granberg, K. Nordlund, Effects of the short-range repulsive € potential on cascade damage in iron, J. Nucl. Mater. 508 (2018) 530-539, https://doi.org/10.1016/j.jnucmat.2018.06.005.
  12. N. Chen, E. Rasch, D. Huang, E.R. Heller, F. Gao, Atomic-scale simulation for pseudometallic defect-generation kinetics and effective NIEL in GaN, IEEE Trans. Nucl. Sci. 65 (2018) 1108-1118, https://doi.org/10.1109/TNS.2018.2822243.
  13. R.E. Stoller, A. Tamm, L.K. Beland, G.D. Samolyuk, G.M. Stocks, A. Caro, L.V. Slipchenko, Y.N. Osetsky, A. Aabloo, M. Klintenberg, Y. Wang, Impact of short-range forces on defect production from high-energy collisions, J. Chem. Theory Comput. 12 (2016) 2871-2879, https://doi.org/10.1021/acs.jctc.5b01194.
  14. S. Plimpton, Fast Parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19, https://doi.org/10.1006/jcph.1995.1039.
  15. S. Qurat-ul-ain, K. Yong-Soo, Primary radiation damage characterization of $\alpha$-iron under irradiation temperature for various PKA energies, Mater. Res. Express 5 (2018), 046518, https://doi.org/10.1088/2053-1591/aabb6f.
  16. M.J. Rahman, M.W.D. Cooper, B. Szpunar, J.A. Szpunar, Primary radiation damage on displacement cascades in $UO_2$, $ThO_2$ and $(U_{0.5}Th_{0.5})O_2$, Comput. Mater. Sci. 154 (2018) 508-516, https://doi.org/10.1016/j.commatsci.2018.08.024.
  17. D.E. Farrell, N. Bernstein, W.K. Liu, Thermal effects in 10 keV Si PKA cascades in 3C-SiC, J. Nucl. Mater. 385 (2009) 572-581, https://doi.org/10.1016/j.jnucmat.2009.01.036.
  18. J.Q. Xi, P. Zhang, C. H He, M. J Zheng, H. Zang, D.X. Guo, L. Ma, Evolution of defects and defect clusters in $\beta$-SiC irradiated at high temperature, Fusion Sci. Technol. 66 (1) (2014) 235-244, https://doi.org/10.13182/FST13-740.
  19. C. Liu, I. Szlufarska, Distribution of defect clusters in the primary damage of ion irradiated 3C-SiC, J. Nucl. Mater. 509 (2018) 392-400, https://doi.org/10.1016/j.jnucmat.2018.07.010.
  20. L. Van Brutzel, J.-M. Delaye, D. Ghaleb, M. Rarivomanantsoa, Molecular dynamics studies of displacement cascades in the uranium dioxide matrix, Philos. Mag. 83 (36) (2003) 4083-4410, https://doi.org/10.1080/14786430310001616081.
  21. H. Tsuchihira, T. Oda, S. Tanaka, Displacement cascade simulation of LiAlO2 using molecular dynamics, J. Nucl. Mater. 414 (1) (2011) 44-52, https://doi.org/10.1016/j.jnucmat.2011.04.064.
  22. S. Alexander, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2010), 015012, https://doi.org/10.1088/0965-0393/18/1/015012.
  23. M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33 (1975) 50-54, https://doi.org/10.1016/0029-5493(75)90035-7.
  24. K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9 (2018) 1084, https://doi.org/10.1038/s41467-018-03415-5.
  25. K. Nordlund, J. Wallenius, L. Malerba, Molecular dynamics simulations of threshold displacement energies in Fe, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 246 (2006) 322-332, https://doi.org/10.1016/j.nimb.2006.01.003.
  26. B. Dacus, B. Beeler, D. Schwen, Calculation of threshold displacement energies in $UO_2$, J. Nucl. Mater. (2019), https://doi.org/10.1016/j.jnucmat.2019.04.002.
  27. R. Devanathan, T. Diaz de la Rubia, W.J. Weber, Displacement threshold energies in $\beta$-SiC, J. Nucl. Mater. 253 (1998) 47-52, https://doi.org/10.1016/S0022-3115(97)00304-8.
  28. E. Holmstrom, A. Kuronen, K. Nordlund, Threshold defect production in silicon € determined by density functional theory molecular dynamics simulations, Phys. Rev. B 78 (2008), 045202, https://doi.org/10.1103/PhysRevB.78.045202.
  29. N. Chen, S. Gray, E. Hernandez-Rivera, D. Huang, P.D. LeVan, F. Gao, Computational simulation of threshold displacement energies of GaAs, J. Mater. Res. 32 (8) (2017) 1555-1562, https://doi.org/10.1557/jmr.2017.46.
  30. C. Liu, I. Szlufarska, Distribution of defect clusters in the primary damage of ion irradiated 3C-SiC, J. Nucl. Mater. 509 (2018) 392-400, https://doi.org/10.1016/j.jnucmat.2018.07.010.
  31. Wei Yang, et al., Molecular dynamics simulations of displacement cascade and threshold energy in ordered alloy Al3U, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 449 (2019) 22-28, https://doi.org/10.1016/j.nimb.2019.01.025.
  32. S.J. Zinkle, 1.03-Radiation-Induced effects on microstructure, Compr. Nucl. Mater. 1 (2012) 65-98. https://doi.org/10.1016/B978-0-08-056033-5.00003-3

Cited by

  1. Dynamics Studies of Nitrogen Interstitial in GaN from Ab Initio Calculations vol.13, pp.16, 2020, https://doi.org/10.3390/ma13163627
  2. Stability and interaction of cation Frenkel pair in wurtzite semiconductor materials vol.196, 2020, https://doi.org/10.1016/j.commatsci.2021.110554
  3. Insight of displacement cascade evolution in gallium arsenide through molecular dynamics simulations vol.202, 2022, https://doi.org/10.1016/j.commatsci.2021.111016