• Title/Summary/Keyword: cloud-based

Search Result 2,639, Processing Time 0.029 seconds

A Trustworthiness Improving Link Evaluation Technique for LOD considering the Syntactic Properties of RDFS, OWL, and OWL2 (RDFS, OWL, OWL2의 문법특성을 고려한 신뢰향상적 LOD 연결성 평가 기법)

  • Park, Jaeyeong;Sohn, Yonglak
    • Journal of KIISE:Databases
    • /
    • v.41 no.4
    • /
    • pp.226-241
    • /
    • 2014
  • LOD(Linked Open Data) is composed of RDF triples which are based on ontologies. They are identified, linked, and accessed under the principles of linked data. Publications of LOD data sets lead to the extension of LOD cloud and ultimately progress to the web of data. However, if ontologically the same things in different LOD data sets are identified by different URIs, it is difficult to figure out their sameness and to provide trustworthy links among them. To solve this problem, we suggest a Trustworthiness Improving Link Evaluation, TILE for short, technique. TILE evaluates links in 4 steps. Step 1 is to consider the inference property of syntactic elements in LOD data set and then generate RDF triples which have existed implicitly. In Step 2, TILE appoints predicates, compares their objects in triples, and then evaluates links between the subjects in the triples. In Step 3, TILE evaluates the predicates' syntactic property at the standpoints of subject description and vocabulary definition and compensates the evaluation results of Step 2. The syntactic elements considered by TILE contain RDFS, OWL, OWL2 which are recommended by W3C. Finally, TILE makes the publisher of LOD data set review the evaluation results and then decide whether to re-evaluate or finalize the links. This leads the publishers' responsibility to be reflected in the trustworthiness of links among the data published.

Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation (수리자극에 의한 지열저류층에서의 유도지진과 단층대의 변형에 관한 입자기반 개별요소법 모델링 연구)

  • Yoon, Jeoung Seok;Hakimhashemi, Amir;Zang, Arno;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.493-505
    • /
    • 2013
  • This numerical study investigates seismicity and fault slip induced by fluid injection in deep geothermal reservoir with pre-existing fractures and fault. Particle Flow Code 2D is used with additionally implemented hydro-mechanical coupled fluid flow algorithm and acoustic emission moment tensor inversion algorithm. The output of the model includes spatio-temporal evolution of induced seismicity (hypocenter locations and magnitudes) and fault deformation (failure and slip) in relation to fluid pressure distribution. The model is applied to a case of fluid injection with constant rates changing in three steps using different fluid characters, i.e. the viscosity, and different injection locations. In fractured reservoir, spatio-temporal distribution of the induced seismicity differs significantly depending on the viscosity of the fracturing fluid. In a fractured reservoir, injection of low viscosity fluid results in larger volume of induced seismicity cloud as the fluid can migrate easily to the reservoir and cause large number and magnitude of induced seismicity in the post-shut-in period. In a faulted reservoir, fault deformation (co-seismic failure and aseismic slip) can occur by a small perturbation of fracturing fluid (<0.1 MPa) can be induced when the injection location is set close to the fault. The presented numerical model technique can practically be used in geothermal industry to predict the induced seismicity pattern and magnitude distribution resulting from hydraulic stimulation of geothermal reservoirs prior to actual injection operation.

User-specific Agrometeorological Service to Local Farming Community: A Case Study (농가맞춤형 기상서비스 시범사업)

  • Yun, Jin I.;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.320-331
    • /
    • 2013
  • The National Center for AgroMeteorology (NCAM) has designed a risk management solution for individual farms threatened by the climate change and variability. The new service produces weather risk indices tailored to the crop species and phenology by using site-specific weather forecasts and analysis derived from digital products of the Korea Meteorological Administration (KMA). If the risk is high enough to cause any damage to the crops, agrometeorological warnings or watches are delivered to the growers' cellular phones with relevant countermeasures to help protect their crops against the potential damage. Core techniques such as scaling down of weather data to individual farm level and the crop specific risk assessment for operational service were developed and integrated into a cloud based service system. The system was employed and implemented in a rural catchment of 50 $km^2$ with diverse agricultural activities and 230 volunteer farmers are participating in this project to get the user-specific weather information from and to feed their evaluations back to NCAM. The experience obtained through this project will be useful in planning and developing the nation-wide early warning service in agricultural sector exposed to the climate and weather extremes under climate change and climate variability.

Estimation of surface-level PM2.5 concentration based on MODIS aerosol optical depth over Jeju, Korea (MODIS 자료의 에어로졸의 광학적 두께를 이용한 제주지역의 지표면 PM2.5 농도 추정)

  • Kim, Kwanchul;Lee, Dasom;Lee, Kwang-yul;Lee, Kwonho;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.413-421
    • /
    • 2016
  • In this study, correlations between Moderate Resolution Imaging Spectroradiometer (MODIS) derived Aerosol Optical Depth (AOD) values and surface-level $PM_{2.5}$ concentrations at Gosan, Korea have been investigated. For this purpose, data from various instruments, such as satellite, sunphotometer, Optical Particle Counter (OPC), and Micro Pulse Lidar (MPL) on 14-24 October 2009 were used. Direct comparison between sunphotometer measured AOD and surface-level $PM_{2.5}$ concentrations showed a $R^2=0.48$. Since the AERONET L2.0 data has significant number of observations with high AOD values paired to low surface-level $PM_{2.5}$ values, which were believed to be the effect of thin cloud or Asian dust. Correlations between MODIS AOD and $PM_{2.5}$ concentration were increased by screening thin clouds and Asian dust cases by use of aerosol profile data on Micro-Pulse Lidar Network (MPLNet) as $R^2$ > 0.60. Our study clearly demonstrates that satellite derived AOD is a good surrogate for monitoring atmospheric PM concentration.

Silver nanowires and nanodendrites synthesized by plasma discharge in solution for the catalytic oxygen reduction in alkaline media

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Kim, Dong-U;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.62-62
    • /
    • 2018
  • Pt is still considered as one of the most active electrocatalysts for ORR in alkaline fuel cells. However, the high cost and scarcity of Pt hamper the widespread commercialization of fuel cells. As a strong candidate for the replacement of Pt catalyst, silver (Ag) has been extensively studied due to its high activity, abundance, and low cost. Ag is more stable than Pt in the pH range of 8~14 as the equilibrium potential of Ag/Ag+ being ${\approx}200mV$ higher than that of Pt/PtO. However, Ag is the overall catalytic activity of Ag for oxygen reduction reaction(ORR) is still not comparable to Pt catalyst since the surface Ag atoms are approximately 10 times less active than Pt atoms. Therefore, further enhancement in the ORR activity of Ag catalysts is necessary to be competitive with current cutting-edge Pt-based catalysts. We demonstrate the architectural design of Ag catalysts, synthesized using plasma discharge in liquid phase, for enhanced ORR kinetics in alkaline media. An attractive feature of this work is that the plasma status controlled via electric-field could form the Ag nanowires or dendrites without any chemical agents. The plasma reactor was made of a Teflon vessel with an inner diameter of 80 mm and a height of 80 mm, where a pair of tungsten(W) electrodes with a diameter of 2 mm was placed horizontally. The stock solutions were made by dissolving the 5-mM AgNO3 in DI water. For the synthesis of Agnanowires, the electricfield of 3.6kVcm-1 in a 200-ml AgNO3 aqueous solution was applied across the electrodes using a bipolar pulsed power supply(Kurita, Seisakusyo Co. Ltd). The repetition rate and pulse width were fixed at 30kHz and 2.0 us, respectively. The plasma discharge was carried out for a fixed reaction time of 60 min. In case of Ag nanodendrites, the electric field of 32kVcm-1 in a 200-ml AgNO3 aqueous solution was applied and other conditions were identical to the plasma discharge in water in terms of electrode configuration, repetition rate and discharge time. Using SEM and STEM, morphology of Ag nanowires and dendrites were investigated. With 3.6 kV/cm, Ag nanowire was obtained, while Ag dendrite was constructed with 32 kV/cm. The average diameter and legth of Ag nanowireses were 50 nm and 3.5 um, and thoes values of Ag dendrites were 40 nm and 3.0 um. As a results of XPS analysis, the surface defects in the Ag nanowires facilitated O2 incorporation into the surface region via the interaction between the oxygen and the electron cloud of the adjacent Ag atoms. The catalytic activity of Ag for oxygen reduction reaction(ORR) showed that the catalytic ORR activity of Ag nanowires are much better than Ag nanodendrites, and electron transfer number of Ag nanowires is similar to that of Pt (${\approx}4$).

  • PDF

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.

Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking (블로킹에 의한 2014년 2월 동해안 지방 폭설 분석)

  • Bae, Jeong-Ho;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.

An Exploratory Study on Construction of Electronic Government as Platform with Customized Public Services : to Improve Administrative Aspects of Administrative Processes and Information Systems (맞춤형 공공서비스제공을 위한 플랫폼 전자정부 구축방안에 대한 탐색적 연구: 행정프로세스와 행정정보시스템 개선측면에서)

  • Lee, Sang-Yun;Chung, Myungju
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Currently Korean government is rushing the new electronic government system introduced as 'platform e-government' with big data and cloud computing technologies and systems, ultimately intending to provide the public institution services customized from the integrated counter or window for the heterogeneous resident services. In this regard, this study suggested how to design the new metadata information system in which mutual integration of information systems can take place, where heterogeneous services can be shared efficiently at the application and data unit, as a separate application that can provide a single one- stop service for residents' petition at the integrated level in the back-office based on the public data in possession of each of government ministries and related organizations. If this proposed system is implemented, the achievement of customized public service can be advanced one step forward in processing the petitions of the residents by organically connected link between 'Demand Chain' and 'Supply Chain' in the integrated window. In other words, it could be made possible through the unification of both the 'Supply Chain' performed in the office space of the officials at the back-office level and the 'Demand Chain' performed in the living space of the residents at the front-office level.

Analysis of the Yearbook from the Korea Meteorological Administration using a text-mining agorithm (텍스트 마이닝 알고리즘을 이용한 기상청 기상연감 자료 분석)

  • Sun, Hyunseok;Lim, Changwon;Lee, YungSeop
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.603-613
    • /
    • 2017
  • Many people have recently posted about personal interests on social media. The development of the Internet and computer technology has enabled the storage of digital forms of documents that has resulted in an explosion of the amount of textual data generated; subsequently there is an increased demand for technology to create valuable information from a large number of documents. A text mining technique is often used since text-based data is mostly composed of unstructured forms that are not suitable for the application of statistical analysis or data mining techniques. This study analyzed the Meteorological Yearbook data of the Korea Meteorological Administration (KMA) with a text mining technique. First, a term dictionary was constructed through preprocessing and a term-document matrix was generated. This term dictionary was then used to calculate the annual frequency of term, and observe the change in relative frequency for frequently appearing words. We also used regression analysis to identify terms with increasing and decreasing trends. We analyzed the trends in the Meteorological Yearbook of the KMA and analyzed trends of weather related news, weather status, and status of work trends that the KMA focused on. This study is to provide useful information that can help analyze and improve the meteorological services and reflect meteorological policy.

A Development Plan for Co-creation-based Smart City through the Trend Analysis of Internet of Things (사물인터넷 동향분석을 통한 Co-creation기반 스마트시티 구축 방안)

  • Park, Ju Seop;Hong, Soon-Goo;Kim, Na Rang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.67-78
    • /
    • 2016
  • Recently many countries around the world are actively promoting smart city projects to address various urban problems such as traffic congestion, housing shortage, and energy scarcity. Due to development of the Internet of Things (IoT), the development of a smart city with sustainability, convenience, and environment-friendliness was enabled through the effective control and reuse of urban resources. The purpose of this study is to analyze the technical trends of IoT and present a development plan for smart city which is one of the applications of the IoT. To this end, the news articles of the Electronic Times between 2013 and 2015were analyzed using the text mining technique and smart city development cases of other countries were investigated. The analysis results revealed the close relationships of big data, cloud, platforms, and sensors with smart city. For the successful development of a smart city, first, all the interested parties in the city must work together to create new values throughout the entire process of value chain. Second, they must utilize big data and disclose public data more actively than they are doing now. This study has made academic contribution in that it has presented a big data analysis method and stimulated follow-up studies. For the practical contribution, the results of this study provided useful data for the policy making of local governments and administrative agencies for smart city development. This study may have limitations in the incorporation of the total trends because only the news articles of the Electronic Times were selected to analyze the technical trends of the IoT.