DOI QR코드

DOI QR Code

Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation

수리자극에 의한 지열저류층에서의 유도지진과 단층대의 변형에 관한 입자기반 개별요소법 모델링 연구

  • Yoon, Jeoung Seok (Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences) ;
  • Hakimhashemi, Amir (Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences) ;
  • Zang, Arno (Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences) ;
  • Zimmermann, Gunter (Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences)
  • Received : 2013.11.12
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

This numerical study investigates seismicity and fault slip induced by fluid injection in deep geothermal reservoir with pre-existing fractures and fault. Particle Flow Code 2D is used with additionally implemented hydro-mechanical coupled fluid flow algorithm and acoustic emission moment tensor inversion algorithm. The output of the model includes spatio-temporal evolution of induced seismicity (hypocenter locations and magnitudes) and fault deformation (failure and slip) in relation to fluid pressure distribution. The model is applied to a case of fluid injection with constant rates changing in three steps using different fluid characters, i.e. the viscosity, and different injection locations. In fractured reservoir, spatio-temporal distribution of the induced seismicity differs significantly depending on the viscosity of the fracturing fluid. In a fractured reservoir, injection of low viscosity fluid results in larger volume of induced seismicity cloud as the fluid can migrate easily to the reservoir and cause large number and magnitude of induced seismicity in the post-shut-in period. In a faulted reservoir, fault deformation (co-seismic failure and aseismic slip) can occur by a small perturbation of fracturing fluid (<0.1 MPa) can be induced when the injection location is set close to the fault. The presented numerical model technique can practically be used in geothermal industry to predict the induced seismicity pattern and magnitude distribution resulting from hydraulic stimulation of geothermal reservoirs prior to actual injection operation.

본 수치해석논문에서는 절리와 단층대를 포함한 지열저류층에 수리자극을 가할 시 수반되는 유도지진과 단층대의 변형을 개별요소법을 사용하여 모델링하였다. 수채해석기법은 2차원 입자유동코드를 기반으로 하며 수리역학적 상호작용기법과 미소파괴음의 모멘트텐서 역산알고리즘이 결합되었다. 수치해석의 주요결과로는 시공간적으로 변하는 유도지진의 분포와 규모 그리고 단층대의 변형(파괴 및 전단변위)과 주입유체압력의 시공간적 분포와의 상관관계이다. 첫 번째 수치해석으로부터 절리가 분포하는 지열저류층에서의 수리자극에 의한 유도지진의 분포는 주입유체의 점성에 상당한 영향을 받는 것으로 나타났다. 주입유체의 점성이 낮은 경우 (1 cP), 유도지진의 발생범위가 큰 것으로 나타났으며, 주입 후 발생하는 유도지진의 개수와 규모 또한 높게 나타났다. 단층대가 존재하는 지열저류층의 수리자극 모델링의 결과, 주입정의 위치가 단층대와 가까운 경우 작은 주입수 압력분포(<0.1 MPa)로도 단층대의 파괴와 전단변형을 일으킬 수 있는 것으로 나타났다. 본 논문에서 소개한 수치해석기법은 수리자극을 통한 지열저류층 개발 시 유도지진의 분포와 규모를 실제 유체주입작업전에 예측할 수 있게 함으로써 지열에너지개발 분야에서 유용하게 사용될 수 있을 것으로 기대한다.

Keywords

References

  1. Altmann J., Muller T., Müller B., Tingay M., Heidbach O. 2010. Poroelastic contribution to the reservoir stress path. International Journal of Rock Mechanics and Mining Sciences 47(7), 1104-1113. https://doi.org/10.1016/j.ijrmms.2010.08.001
  2. Al-Busaidi A., Hazzard J.F., Young R.P. 2005. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. Journal of Geophysical Research 110, B06302, DOI: 10.1029/2004JB003297.
  3. Baisch S., Voros R., Rothert E., Stang H., Jung R., Schellschmidt R. 2010. A numerical model for fluid injection induced seismicity at Soultz-sous-Forets. International Journal of Rock Mechanics Mining Sciences 47, 405-413. https://doi.org/10.1016/j.ijrmms.2009.10.001
  4. Bruel D. 2007. Using the migration of induced seismicity as a constraint for fractured hot dry rock reservoir modelling. International Journal of Rock Mechanics and Mining Sciences 44, 1106-1117. https://doi.org/10.1016/j.ijrmms.2007.07.001
  5. Cornet F.H., Berard Th., Bourouis S. 2007. How close to failure is a granite rock mass at a 5 km depth? International Journal of Rock Mechanics Mining Sciences 44, 47-66. https://doi.org/10.1016/j.ijrmms.2006.04.008
  6. Gutenberg B., Richter C.F. 1956. Earthquake magnitude, intensity, energy and acceleration (second paper). Bulletin of the Seismological Society of America 46, 105-145.
  7. Hakimhashemi A., Yoon J.S., Heidbach O., Zang A., Grunthal G. 2013. Forward induced seismic hazard assessment (FISHA) application to synthetic seismicity catalog generated by hydromechanical modeling of fluid injection. In: Proceedings of Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, Feb. 11-13, 2013, SGP-TR-198.
  8. Hanks T.C., Kanamori H. 1979. A Moment Magnitude Scale. Journal of Geophysical Research 84, 2348-2350. https://doi.org/10.1029/JB084iB05p02348
  9. Hazzard J.F., Young R.P. 2002. Moment tensors and micromechanical models. Tectonophysics 356, 181-197. https://doi.org/10.1016/S0040-1951(02)00384-0
  10. Hazzard J.F., Young R.P. 2004. Dynamic modeling of induced seismicity. International Journal of Rock Mechanics Mining Sciences 41, 1365-1376. https://doi.org/10.1016/j.ijrmms.2004.09.005
  11. Hazzard J.F., Young R.P., Oates S.J. 2002. Numerical modeling of seismicity induced by fluid injection in a fractured reservoir. In: Mining and Tunnel Innovation and Opportunity, In: Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, Canada, pp. 1023-1030.
  12. Hillis R. 2000. Pore pressure/stress coupling and its implications for seismicity. Exploration Geophysics 31, 448-454. https://doi.org/10.1071/EG00448
  13. Hokmark H., Lonnqvist M., Falth B. 2010. THM-issues in repository rock-Thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites. SKB-Swedish Nuclear Fuel and Waste Management Co. Technical Report TR-10-23.
  14. Itasca Consulting Group Inc. 2008. PFC2D-Particle Flow Code in 2 Dimensions, Version 4.0. Minneapolis.
  15. Kohl T., Megel T. 2007. Predictive modeling of reservoir response to hydraulic stimulations at the European EGS site Soultz-sous-Forets. International Journal of Rock Mechanics and Mining Sciences 44(8), 1118-1131. https://doi.org/10.1016/j.ijrmms.2007.07.022
  16. Kraft T., Mai P.M., Wiemer S., Deichmann N., Ripperger J., Kastli P., Bachmann C., Fah D., Wossner J., Giardini D. 2009. Enhanced Geothermal Systems: Mitigating Risk in Urban Areas. EOS 90(32), 11 August 2009.
  17. Kramer S.L. 1996. Geotechnical Earthquake Engineering, Prentice-Hall, Englewood Cliffs, N.J. 653.
  18. Majer E.L., Baria R., Stark M., Oates S., Bommer J., Smith B., Asanuma H. 2007. Induced seismicity associated with Enhanced Geothermal Systems. Geothermics 36, 185-222. https://doi.org/10.1016/j.geothermics.2007.03.003
  19. McClure M., Horne R. 2011. Investigation of injectioninduced seismicity using a coupled fluid flow and rate and state friction model. Geophysics 76(6), WC183-WC200. https://doi.org/10.1190/geo2010-0395.1
  20. Mukuhira Y., Asanuma H., Niitsuma H., Haring M.O. 2013. Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel, Switzerland. Geothermics 45, 1-17. https://doi.org/10.1016/j.geothermics.2012.07.005
  21. Potyondy D.O., Cundall P.A. 2004. A bonded-particle model for rock. International Journal of Rock Mechanics Mining Sciences 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  22. Rutqvist J., Birkholzer J., Cappa F., Tsang C.-F. 2007. Estimating maximum sustainable injection pressure during geological sequestration of $CO_2$ using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management 48,1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
  23. Schoenball M., Muller T.M., Muller B., Heidbach O. 2010. Fluid-induced microseismicity in pre-stressed rock masses. Geophysical Journal International 180, 113-119.
  24. Yoon J.S., Zang A., Stephansson O. 2012. Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model. International Journal of Rock Mechanics Mining Sciences 49, 68-83. https://doi.org/10.1016/j.ijrmms.2011.11.004
  25. Yoon J.S., Zang A., Stephansson O. 2013. Simulation of hydraulic stimulation of fractured reservoir and induced seismicity using discrete element-fracture network model. In: Proceedings of Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 11-13, 2013, SGP-TR-198.
  26. Zang A., Stephansson O. 2010. Stress Field of the Earth's Crust. Springer Science + Business Media B.V., Dordrecht.
  27. Zang A., Yoon J.S., Stephansson O., Heidbach O. 2013. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduced induced seismicity. Geophysical Journal International 195, 1282-1287. https://doi.org/10.1093/gji/ggt301
  28. Zhao X., Young R.P. 2011. Numerical modelling of seismicity induced by fluid injection in naturally fractured reservoirs. Geophysics 76(6), WC167-WC180. https://doi.org/10.1190/geo2011-0025.1