• Title/Summary/Keyword: closed model

Search Result 1,644, Processing Time 0.027 seconds

Assembly Performance Evaluation Using FACTOR / AIM for the Automobile Body Assembly Line (자동차 차체조립공정설계를 위한 시뮬레이션)

  • Hwang, Heung-Suk;Cho, Gyu-Sung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.95-102
    • /
    • 2001
  • The design of automobile body assembly line is one of essential parts for improving the process performance. The major objective of this research is to develop a performance evaluation model for automobile assembly line using a closed queueing network(CQN) and simulation method. In this study we used a two-step approach to compute the performance of the assembly line : first, we used CQN model considering assembly line equipments and the line operating time under the assumption of no failure, and second we used a well-known simulator FACTOR/AIM. Finally we implemented this model on a K automobile company and we have shown the sample results of automobile body assembly line.

  • PDF

Analysis of the Lateral Motion of a Tractor-Trailer Combination (II) Operator/Vehicle System with Time Delay for Backward Maneuver

  • Mugucia, S.W.;Torisu, R.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1147-1156
    • /
    • 1993
  • In order to analyze lateral control in the backward maneuver of a tractor -trailer combination , a kinematic vehicle model and a human operator model with time delay were utilized for the operator/vehicle system. The analysis was carried out using the frequency domain approach. The open-loop stability of the vehicle motion was analyzed through the transfer functions. The sensitivity of the stability of the vehicle motion. to a change in the steering angle, was also analyzed. A mathematical model of the closed -loop operator/vehicle system was then formulated. The closed -loop stability of the operator /vehicle system was then analyzed. The effect of the delay time on the system was also analyzed through computer simulation.

  • PDF

Robust Stability Analysis of Fuzzy Feedback Linearization Control Systems

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.78-82
    • /
    • 2002
  • In this paper, we have studied a numerical stability analysis method for the robust fuzzy feedback linearization regulator using Takagi-Sugeno fuzzy model. To analyze the robust stability, we assume that uncertainty is included in the model structure with known bounds. For these structured uncertainty, the robust stability of the closed system is analyzed by applying Linear Matrix Inequalities theory following a transformation of the closed loop systems into Lur'e systems.

ECM Algorithm for Fitting of Mixtures of Multivariate Skew t-Distribution

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.673-683
    • /
    • 2012
  • Cabral et al. (2012) defined a mixture model of multivariate skew t-distributions(STMM), and proposed the use of an ECME algorithm (a variation of a standard EM algorithm) to fit the model. Their estimation by the ECME algorithm is closely related to the estimation of the degree of freedoms in the STMM. With the ECME, their purpose is to escape from the calculation of a conditional expectation that is not provided by a closed form; however, their estimates are quite unstable during the procedure of the ECME algorithm. In this paper, we provide a conditional expectation as a closed form so that it can be easily calculated; in addition, we propose to use the ECM algorithm in order to stably fit the STMM.

An Emphirical Closed Loop Modeling of a Suspension System using a Neural Networks (신경회로망을 이용한 폐회로 현가장치의 시스템 모델링)

  • 김일영;정길도;노태수;홍동표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.384-388
    • /
    • 1996
  • The closed-loop system modeling of an Active/semiactive suspension system has been accomplished through an artificial neural Networks. The 7DOF full model as the system equation of motion has been derived and the output feedback linear quadratic regulator has been designed for the control purpose. For the neural networks training set of a sample data has been obtained through the computer simulation. A 7DOF full model with LQR controller simulated under the several road conditions such as sinusoidal bumps and the rectangular bumps. A general multilayer perceptron neural network is used for the dynamic modeling and the target outputs are feedback to the input layer. The Backpropagation method is used as the training algorithm. The modeling of system and the model validation have been shown through computer simulations.

  • PDF

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

Analytic Linearization of Symbolic Nonlinear Equations (기호 비선형 방정식의 해석적 선형화)

  • Song, Sung-Jae;Moon, Hong-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.145-151
    • /
    • 1995
  • The first-order Taylor series expansion can be evaluated analytically from the formulated symbolic nonlinear dynamic equations. A closed-form linear dynamic euation is derived about a nominal trajectory. The state space representation of the linearized dynamics can be derived easily from the closed-form linear dynamic equations. But manual symbolic expansion of dynamic equations and linearization is tedious, time-consuming and error-prone. So it is desirable to manipulate the procedures using a computer. In this paper, the analytic linearization is performed using the symbolic language MATHEMATICA. Two examples are given to illustrate the approach anbd to compare nonlinear model with linear model.

  • PDF

Misinformation Detection and Rectification Based on QA System and Text Similarity with COVID-19

  • Insup Lim;Namjae Cho
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.5
    • /
    • pp.41-50
    • /
    • 2021
  • As COVID-19 spread widely, and rapidly, the number of misinformation is also increasing, which WHO has referred to this phenomenon as "Infodemic". The purpose of this research is to develop detection and rectification of COVID-19 misinformation based on Open-domain QA system and text similarity. 9 testing conditions were used in this model. For open-domain QA system, 6 conditions were applied using three different types of dataset types, scientific, social media, and news, both datasets, and two different methods of choosing the answer, choosing the top answer generated from the QA system and voting from the top three answers generated from QA system. The other 3 conditions were the Closed-Domain QA system with different dataset types. The best results from the testing model were 76% using all datasets with voting from the top 3 answers outperforming by 16% from the closed-domain model.

An Interference Analysis Method with Site-Specific Path Loss Model for Wireless Personal Area Network

  • Moon, Hyun-Wook;Kwon, Se-Woong;Lee, Jong-Hyun;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.290-295
    • /
    • 2010
  • In this paper, an interference analysis method with a site-specific path loss model for a wireless personal area network (WPAN) is proposed. The site-specific path loss model is based on geometrical optics and geometric probability to consider both site-specific radio propagation characteristics and a closed-form expression to obtain the mean interference from which the uniformly distributed multiple interferers are derived. Therefore, the proposed interference analysis method can achieve more computational simplicity than the Monte-Carlo (MC) simulation, which uses the ray-tracing (RT) technique. In addition, better accuracy than the conventional interference analysis model that uses stochastic method can also be achieved. To evaluate the proposed method, a signal to the interference-noise ratio with a mean interference concept for uniformly distributed interferers is calculated and compared in two simulation scenarios. As a result, the proposed method produces not only better matched results with the MC simulation using the RT technique than the conventional interference analysis model, but also simpler and faster calculation, which is due to the site-specific path loss model and closed-form expression for interference calculation.

The Spatially Closed Universe

  • Park, Chan-Gyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.353-381
    • /
    • 2019
  • The general world model for homogeneous and isotropic universe has been proposed. For this purpose, we introduce a global and fiducial system of reference (world reference frame) constructed on a (4+1)-dimensional space-time, and assume that the universe is spatially a 3-dimensional hypersurface embedded in the 4-dimensional space. The simultaneity for the entire universe has been specified by the global time coordinate. We define the line element as the separation between two neighboring events on the expanding universe that are distinct in space and time, as viewed in the world reference frame. The information that determines the kinematics of the geometry of the universe such as size and expansion rate has been included in the new metric. The Einstein's field equations with the new metric imply that closed, flat, and open universes are filled with positive, zero, and negative energy, respectively. The curvature of the universe is determined by the sign of mean energy density. We have demonstrated that the flat universe is empty and stationary, equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles, redshift, total energy in the universe, cosmic distance and time scales, and so forth. The notable feature of the spatially closed universe is that the universe started from a non-singular point in the sense that physical quantities have finite values at the initial time as judged in the world reference frame. It has also been shown that the inflation with positive acceleration at the earliest epoch is improbable.