• Title/Summary/Keyword: closed loop control

Search Result 1,409, Processing Time 0.045 seconds

Closed-loop Identification and Controller Design for a Converter (컨버터의 폐루프 식별 및 제어기 설계)

  • Yun, Kyong-Han;Lim, Yeon-Soo;Jin, Li-Hua;Kim, Jae-Jin;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1632-1633
    • /
    • 2007
  • This paper presents a new method of designing digital controller based on closed-loop identification of a pulse width modulation (PWM) converter system. We consider the control system structure which is composed of both current control loop and voltage control loop. The current controller can be designed independently of voltage loop. Whereas voltage controller can not do easily due to the PWM switching component which is nonlinear in nature. Furthermore, the control objective of inner loop is to track the sine wave of 60 Hz, but the outer loop shall maintain the constant DC voltage irrespective to load change. To systematically design outer loop controller, we propose a method finding linear approximate model of the nonlinear inner loop part including current controller by closed loop identification. Based on the identified model, we show that a simple digital voltage controller can be directly designed and it has good performance.

  • PDF

Power Closed-loop Control of Switched Reluctance Generator for High Efficiency Operation

  • Li, Zhenguo;Gao, Dongdong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.397-403
    • /
    • 2012
  • This paper describes a control method of turn-on/off angles to improve the efficiency of the switched reluctance generator(SRG) with a power closed-loop control system, and the inner-loop of the system is current hysteresis control. The SRG control system is constituted by the PI power controller and the two-level current hysteresis controller. By measuring and analyzing the system losses of different reference powers, speeds and turn-on/off angles, selection strategy of optimal turn-on/off angles is discussed. The proposed method is simple, reliable, and easy to achieve.

Dynamic Analysis and Control Design of Current-Mode Controlled Asymmetrical Half-Bridge DC-To-DC Converters (전류 제어 비대칭 하프 브릿지 직류-직류 컨버터의 동특성 해석 및 제어회로 설계)

  • Lim W.S.;Choi B,C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.337-340
    • /
    • 2003
  • This paper presented practical details about control-loop design and dynamic analysis for a peak current-mode controlled asymmetrical half-bridge(ASHB) do-to-dc converter, Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of ASHB converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

Dynamic Analysis and Control Circuit Design of Isolated Double Step-Down DC-DC Converter (절연형 이중 강압 직류-직류 컨버터의 동특성 해석 및 제어회로 설계)

  • Ha, Heonchul;Kim, Hansang;Choi, Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.229-230
    • /
    • 2015
  • This paper presents practical details about control-loop design and dynamic analysis for a voltage-mode controlled isolated double step-down DC-DC converter. Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of isolated double step-down DC-DC converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

The standard deviations for eigenvalues of the closed-loop systems with random parameters

  • Chen, Su Huan;Liu, Chun;Chen, Yu Dong
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.331-342
    • /
    • 2004
  • The vibration control problem of structures with random parameters is discussed, which is approximated by a deterministic one. A method for calculating the standard deviations of eigenvalues of the closed-loop systems is presented by using the random perturbation. The method presented in this paper will not require the distribution function of the random parameters of the systems other than their means and variances. Similarly, the distribution function of the random eigenvalues will not be computed other than their means and variances. The standard deviations of eigenvalues of the uncertain closed-loop systems can be used to estimate the stability robustness. The present method is applied to a vibration control system to illustrate the application. The numerical results show that the present method is effective.

AI based control theory for interaction of ocean system

  • Chen, C.Y.J.;Hsieh, Chia-Yen;Smith, Aiden;Alako, Dariush;Pandey, Lallit;Chen, Tim
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. Problem and objective: Based on the relaxed method, the chaotic system can be stabilized by regulating appropriately the parameters of dither. Scope and method: If the frequency of dither is high enough, the trajectory of the closed-loop dithered chaotic system and that of its corresponding model-the closed-loop fuzzy relaxed system can be made as close as desired. Results and conclusion: The behavior of the closed-loop dithered chaotic system can be rigorously predicted by establishing that of the closed-loop fuzzy relaxed system.

LTI model realization problem of linear periodic discrete-time systems

  • Su, Laiping;Saito, Osami;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1139-1144
    • /
    • 1990
  • In this paper, we consider linear periodic discrete-time control systems under periodic compensation. Such a closed-loop system generally represents a periodic time-varying system. We examine the problem of finding a compensator such that the closed-loop system is realized as LTI model (if possible) with the closed-loop stability being satisfied. We present a necessary and sufficient condition for solving such problem and also give the characterization of realizable LTI models.

  • PDF

HARDWARE IN THE LOOP SIMULATION OF HYBRID VEHICLE FOR OPTIMAL ENGINE OPERATION BY CVT RATIO CONTROL

  • Yeo, H.;Song, C.H.;Kim, C.S.;Kim, H.S.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.201-208
    • /
    • 2004
  • Response characteristics of the CVT system for a parallel hybrid electric vehicle (HEV) are investigated. From the experiment, CVT ratio control algorithm for the optimal engine operation is obtained. To investigate the effect of the CVT system dynamic characteristics on the HEV performance, a hardware in the loop simulation (HILS) is performed. In the HILS, hardwares of the CVT belt-pulley and hydraulic control valves are used. It is found that the engine performance by the open loop CVT ratio control shows some deviation from the OOL in spite of the RCVs open loop control ability. To improve the engine performance, a closed loop control of the CVT ratio is proposed with variable control gains depending on the shift direction and the CVT speed ratio range by considering the nonlinear characteristics of the RCV and CVT belt-pulley dynamics. The HILS results show that the engine performance is improved by the closed loop control showing the operation trajectory close to the OOL.

Feedback Control for Expanding Range and Improving Lineraity of Microaccelerometers (가속도계의 동작범위 확장와 선형성 향상을 위한 피드백 제어)

  • Park, Yong-Hwa;Park, Sang-Jun;Choi, Byung-Doo;Ko, Hyoung-Ho;Song, Tae-Yong;Lim, Genu-Won;Huh, Kun-Soo;Park, Jahng-Hyon;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1082-1088
    • /
    • 2004
  • This paer presents a feedback-controlled, MEMS-fabricated microaccelerometer($\mu$XL). The $\mu$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis $\mu$XL fabricated by sacrificial bulk micromachining(SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100Hz. The input range, non-linearity and bias stability are improved from $\pm10\;g\;to\;\pm18g$, from 11.1%FSO to 0.86%FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively.

Tracking control for multi-axis system using two-degrees-of-freedom controller

  • Park, Ho-Joon;Lee, Je-Hee;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.380-384
    • /
    • 1996
  • This paper represents an adaptive position controller with the disturbance observer for multi-axis servo system. The overall control system consists of three parts : the position controller, the disturbance observer with free parameters and cross-coupled controller which enhances contouring performance by reducing errors. Using two-degrees-of freedom conception, we design the command input response and the closed loop characteristics independently. The servo system can improve the closed loop characteristics without affecting the command input response. The characteristics of the closed loop system is improved by suppressing disturbance torque effectively with the disturbance observer. Moreover, the cross-coupled controller enhances tracking performance. Thus total position control performance is improved. Finally, the performance of the proposed controller shows that it improves the contouring performance along with the reference trajectory in the XY-table.

  • PDF