• Title/Summary/Keyword: clock scheme

Search Result 213, Processing Time 0.02 seconds

고속 여분 부동 소수점 이진수의 제산/스퀘어-루트 설계 및 제작 (A Design and Fabrication of the High-Speed Division/square-Root using a Redundant Floating Point Binary Number)

  • 김종섭;이종화;조상복
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.365-368
    • /
    • 2001
  • This paper described a design and implementation of the division/square-root for a redundant floating point binary number using high-speed quotient selector. This division/square-root used the method of a redundant binary addition with 25MHz clock speed. The addition of two numbers can be performed in a constant time independent of the word length since carry propagation can be eliminated. We have developed a 16-bit VLSI circuit for division and square-root operations used extensively in each iterative step. It peformed the division and square-root by a redundant binary addition to the shifted binary number every 16 cycles. Also the circuit uses the nonrestoring method to obtain a quotient. The quotient selection logic used a leading three digits of partial remainders in order to be implemented in a simple circuit. As a result, the performance of the proposed scheme is further enhanced in the speed of operation process by applying new quotient selection addition logic which can be parallelly process the quotient decision field. It showed the speed-up of 13% faster than previously presented schemes used the same algorithms.

  • PDF

FPGA 구조 및 로직 블록의 설계에 관한 연구 (A study on the architecture and logic block design of FPGA)

  • 윤여환;문중석;문병모;안성근;정덕균
    • 전자공학회논문지A
    • /
    • 제33A권11호
    • /
    • pp.140-151
    • /
    • 1996
  • In this study, we designed the routing structure and logic block of a SRAM cell-based FPGA with symmetrical-array architecture. The designed routing structure is composed of switch matrices, routing channels and I/O blocks, and the routing channels can be subdivided into single length channels, double length channels and global length channels. The interconnection between wires is made through SRAM cell-controlled pass transistors. To reduce the signal delay in pass transistors, we proposed a scheme raising the gate-control voltage to 7V. The designed SRAM cells have built-in shift register capability, so there is no need for separate shift registers. We designed SRAM cells in the LUTs(look-up tables) to enable the wirte operations to be performed synchronously with the clock for ease of system application. Each logic block (LFU) has four 4-input LUTs, flip-flops and other gates, and the LUTs can be used a sSRAM memory. The LFU also has a dedicated carry logic, so a 4-bit adder can be implemented in one LFU. We designed our FPGA using 0.6.mu.m CMOS technology, and simulation shows proper operation of a 4 bit counter at 100MHz.

  • PDF

A 1.2-V Wide-Band SC Filter for Wireless Communication Transceivers

  • Yang, Hui-Kwan;Cha, Sang-Hyun;Lee, Seung-Yun;Lee, Sang-Heon;Lim, Jin-Up;Choi, Joong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권4호
    • /
    • pp.286-292
    • /
    • 2006
  • This paper presents the design of a low-voltage wide-band switched-capacitor (SC) filter for wireless communication receiver applications. The filter is the 5th-order Elliptic lowpass filter. With the clock frequency of 50MHz implying that an effective sampling frequency is 100MHz with double sampling scheme, the cut-off frequency of the filter is programmable to be 1.25MHz, 2.5MHz, 5MHz and 10MHz. For low-power systems powered by a single-cell battery, the SC filter was elaborately designed to operate at 1.2V power supply. Simulation result shows that the 3rd-order input intercept point (IIP3) can be up to 27dBm. The filter was fabricated in a $0.25-{\mu}m$ 1P5M standard CMOS technology and measured frequency responses show good agreement with the simulation ones. The current consumption is 34mA at a 1.2V power supply.

Low-Complexity and Low-Power MIMO Symbol Detector for Mobile Devices with Two TX/RX Antennas

  • Jang, Soohyun;Lee, Seongjoo;Jung, Yunho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.255-266
    • /
    • 2015
  • In this paper, a low-complexity and low-power soft output multiple input multiple output (MIMO) symbol detector is proposed for mobile devices with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing mode and spatial diversity mode in single hardware and shows the optimal maximum likelihood (ML) performance. By applying a multi-stage pipeline structure and using a complex multiplier based on the polar-coordinate, the complexity of the proposed architecture is dramatically decreased. Also, by applying a clock-gating scheme to the internal modules for MIMO modes, the power consumption is also reduced. The proposed symbol detector was designed using a hardware description language (HDL) and implemented using a 65nm CMOS standard cell library. With the proposed architecture, the proposed MIMO detector takes up an area of approximately $0.31mm^2$ with 183K equivalent gates and achieves a 150Mbps throughput. Also, the power estimation results show that the proposed MIMO detector can reduce the power consumption by a maximum of 85% for the various test cases.

An Adaptive Equalizer for High-Speed Receiver using a CDR-Assisted All-Digital Jitter Measurement

  • Kim, Jong-Hoon;Lim, Ji-Hoon;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.155-167
    • /
    • 2015
  • An adaptive equalization scheme based on all-digital jitter measurement is proposed for a continuous time linear equalizer (CTLE) preceding a clock and data recovery (CDR) in a receiver circuit for high-speed serial interface. The optimum equalization coefficient of CTLE is determined during the initial training period based on the measured jitter. The proposed circuit finds automatically the optimum equalization coefficient for CTLE with 20", 30", 40" FR4 channel at the data rate of 5 Gbps. The chip area of the equalizer including the adaptive controller is 0.14 mm2 in a $0.13{\mu}m$ process. The equalizer consumes 12 mW at 1.2 V supply during the normal operation. The adaptive equalizer has been applied to a USB3.0 receiver.

동기 능력을 보유한 변형된 BCH 부호 (A Modified BCH Code with Synchronization Capability)

  • 심용걸
    • 정보처리학회논문지C
    • /
    • 제11C권1호
    • /
    • pp.109-114
    • /
    • 2004
  • 본 논문에서는 통신 시스템에서 발생하는 에러를 정정 및 검출하기 위한 새로운 부호와 그 복호 방식을 제안하였다. 데이터 0의 런 길이를 제한하고 데이터 1의 최소 밀도를 증가시키기 위하여 (15, 7) BCH 부호를 변형하였으며 전체 패리티 비트를 추가하였다. 제안된 부호는 (16, 7) 블록 부호이며 비트 클럭 신호의 재생 능력과 높은 에러 제어 능력을 가지고 있다. 제안된 부호에서 데이터 0의 런 길이는 7 이하이고, 데이터 1의 밀도는 1/8 이상이며 최소 해밍 거리가 6임을 입증하였다. 제안된 부호를 사용하였을 때의 복호 에러 확률, 에러 검출 확률, 바른 복호 확률을 제시하였다. 기존의 다른 방식들에 비하여 오류 제어 능력이 우수함을 확인할 수 있었다.

Single-Phase Energy Metering Chip with Built-in Calibration Function

  • Lee, Youn-Sung;Seo, Jeongwook;Wee, Jungwook;Kang, Mingoo;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3103-3120
    • /
    • 2015
  • This paper presents a single-phase energy metering chip with built-in calibration function to measure electric power quantities. The entire chip consists of an analog front end, a filter block, a computation engine, a calibration engine, and an external interface block. The key design issues are how to reduce the implementation costs of the computation engine from repeatedly used arithmetic operations and how to simplify calibration procedure and reduce calibration time. The proposed energy metering chip simplifies the computation engine using time-division multiplexed arithmetic units. It also provides a simple and fast calibration scheme by using integrated digital calibration functionality. The chip is fabricated with 0.18-μm six-layer metal CMOS process and housed in a 32-pin quad-flat no-leads (QFN) package. It operates at a clock speed of 4096 kHz and consumes 9.84 mW in 3.3 V supply.

Synchronization for IR-UWB System Using a Switching Phase Detector-Based Impulse Phase-Locked Loop

  • Zheng, Lin;Liu, Zhenghong;Wang, Mei
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.175-183
    • /
    • 2012
  • Conventional synchronization algorithms for impulse radio require high-speed sampling and a precise local clock. Here, a phase-locked loop (PLL) scheme is introduced to acquire and track periodical impulses. The proposed impulse PLL (iPLL) is analyzed under an ideal Gaussian noise channel and multipath environment. The timing synchronization can be recovered directly from the locked frequency and phase. To make full use of the high harmonics of the received impulses efficiently in synchronization, the switching phase detector is applied in iPLL. It is capable of obtaining higher loop gain without a rise in timing errors. In different environments, simulations verify our analysis and show about one-tenth of the root mean square errors of conventional impulse synchronizations. The developed iPLL prototype applied in a high-speed ultra-wideband transceiver shows its feasibility, low complexity, and high precision.

Redundant binary 연산을 이용한 고속 복소수 승산기 (A high-speed complex multiplier based on redundant binary arithmetic)

  • 신경욱
    • 전자공학회논문지C
    • /
    • 제34C권2호
    • /
    • pp.29-37
    • /
    • 1997
  • A new algorithm and parallel architecture for high-speed complex number multiplication is presented, and a prototype chip based on the proposed approach is designed. By employing redundant binary (RB) arithmetic, an N-bit complex number multiplication is simplified to two RB multiplications (i.e., an addition of N RB partial products), which are responsible for real and imaginary parts, respectively. Also, and efficient RB encoding scheme proposed in this paper enables to generate RB partial products without additional hardware and delay overheads compared with binary partial product generation. The proposed approach leads to a highly parallel architecture with regularity and modularity. As a results, it results in much simpler realization and higher performance than the classical method based on real multipliers and adders. As a test vehicle, a prototype 8-b complex number multiplier core has been fabricated using $0.8\mu\textrm{m}$ CMOS technology. It contains 11,500 transistors on the area of about $1.05 \times 1.34 textrm{mm}^2$. The functional and speed test results show that it can safely operate with 200 MHz clock at $V_{DD}=2.5 V$, and consumes about 90mW.

  • PDF

IEEE 802.11a 무선 랜에 적용할 Low Latency 인터리버 설계 (An interleaver design of low latency for IEEE 802.11a Wireless LAN)

  • 신보영;이종훈;박준;원동윤;송상섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 통신소사이어티 추계학술대회논문집
    • /
    • pp.200-203
    • /
    • 2003
  • By minimizing the burst error of data and correcting the error, we can define the convolution coding and interleaving in IEEE 802.11a wireless tan system. Two step block interleaver was decided by coded bits per OFDM symbol and due to this it comes to the delay time in IEEE 802.11a. This is the point of the question which we must consider. We try to decrease the delay time by all 48-clock from interleavings, and we have proposed a way carried out the interleaving outputs per symbol. So in comparison with the existing interleaver, we can decrease the delay time in reading and writing data, as well as reduce the delay time of bit re-ordering per symbol. Also this scheme is apply in all x-QAM cases.

  • PDF