• 제목/요약/키워드: clinical strains

검색결과 701건 처리시간 0.025초

An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine

  • Li, Wenyu;Yin, Fan;Bu, Zixuan;Liu, Yuying;Zhang, Yongqing;Chen, Xiabing;Li, Shaowen;Li, Lu;Zhou, Rui;Huang, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.278-286
    • /
    • 2022
  • Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.

Epidemiological investigation and phylogenetic analysis of Classical Swine Fever virus in Yunnan province from 2015 to 2021

  • Yao, Jun;Su, Linlin;Wang, Qiaoping;Gao, Lin;Xie, Jiarui;He, Yuwen;Shu, Xianghua;Song, Chunlian;Chai, Jun;Zhang, Yifang;Yang, Shibiao
    • Journal of Veterinary Science
    • /
    • 제23권4호
    • /
    • pp.57.1-57.9
    • /
    • 2022
  • Background: Classical swine fever virus (CSFV), the causative agent of classical swine fever (CFS), is a highly contagious disease that poses a serious threat to Chinese pig populations. Objectives: Many provinces of China, such as Shandong, Henan, Hebei, Heilongjiang, and Liaoning provinces, have reported epidemics of CSFV, while the references to the epidemic of CSFV in Yunnan province are rare. This study examined the epidemic characteristics of the CSFV in Yunnan province. Methods: In this study, 326 tissue samples were collected from different regions in Yunnan province from 2015 to 2021. A reverse transcription-polymerase chain reaction (RT-PCR), sequences analysis, and phylogenetic analysis were performed for the pathogenic detection and analysis of these 326 clinical specimens. Results: Approximately 3.37% (11/326) of specimens tested positive for the CSFV by RT-PCR, which is lower than that of other regions of China. Sequence analysis of the partial E2 sequences of eleven CSFV strains showed that they shared 89.0-100.0% nucleotide (nt) and 95.0-100.0% amino acid (aa) homology, respectively. Phylogenetic analysis showed that these novel isolates belonged to the subgenotypes 2.1c and 2.1d, with subgenotype 2.1c being predominant. Conclusions: The CSFV was sporadic in China's Yunnan province from 2015 to 2021. Both 2.1c and 2.1d subgenotypes were found in this region, but 2.1c was dominant.

Bactericidal Effect of Cecropin A Fused Endolysin on Drug-Resistant Gram-Negative Pathogens

  • Lim, Jeonghyun;Hong, Juyeon;Jung, Yongwon;Ha, Jaewon;Kim, Hwan;Myung, Heejoon;Song, Miryoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.816-823
    • /
    • 2022
  • The rapid spread of superbugs leads to the escalation of infectious diseases, which threatens public health. Endolysins derived from bacteriophages are spotlighted as promising alternative antibiotics against multi-drug resistant bacteria. In this study, we isolated and characterized the novel Salmonella typhimurium phage PBST08. Bioinformatics analysis of the PBST08 genome revealed putative endolysin ST01 with a lysozyme-like domain. Since the lytic activity of the purified ST01 was minor, probably owing to the outer membrane, which blocks accessibility to peptidoglycan, antimicrobial peptide cecropin A (CecA) was fused to the N-terminus of ST01 to disrupt the outer membrane. The resulting CecA::ST01 has been shown to have increased bactericidal activity against gram-negative pathogens including Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Enterobacter cloacae and the most affected target was A. baumannii. In the presence of 0.25 µM CecA::ST01, A. baumannii ATCC 17978 strain was completely killed and CCARM 12026 strain was wiped out by 0.5 µM CecA::ST01, which is a clinical isolate of A. baumannii and resistant to multiple drugs including carbapenem. Moreover, the larvae of Galleria mellonella could be rescued up to 58% or 49% by the administration of CecA::ST01 upon infection by A. baumannii 17978 or CCARM 12026 strain. Finally, the antibacterial activity of CecA::ST01 was verified using 31 strains of five gram-negative pathogens by evaluation of minimal inhibitory concentration. Thus, the results indicate that a fusion of antimicrobial peptide to endolysin can enhance antibacterial activity and the spectrum of endolysin where multi-drug resistant gram-negative pathogens can be efficiently controlled.

Efficacy of genotype-matched Newcastle disease virus vaccine formulated in carboxymethyl sago starch acid hydrogel in chickens vaccinated via different routes

  • Mahamud, Siti Nor Azizah;Bello, Muhammad Bashir;Ideris, Aini;Omar, Abdul Rahman
    • Journal of Veterinary Science
    • /
    • 제23권4호
    • /
    • pp.25.1-25.14
    • /
    • 2022
  • Background: The commercially available Newcastle disease (ND) vaccines were developed based on Newcastle disease virus (NDV) isolates genetically divergent from field strains that can only prevent clinical disease, not shedding of virulent heterologous virus, highlighting the need to develop genotype-matched vaccines Objectives: This study examined the efficacy of the NDV genotype-matched vaccine, mIBS025 strain formulated in standard vaccine stabilizer, and in carboxymethyl sago starch-acid hydrogel (CMSS-AH) following vaccination via an eye drop (ED) and drinking water (DW). Methods: A challenge virus was prepared from a recent NDV isolated from ND vaccinated flock. Groups of specific-pathogen-free chickens were vaccinated with mIBS025 vaccine strain prepared in a standard vaccine stabilizer and CMSS-AH via ED and DW and then challenged with the UPM/NDV/IBS362/2016 strain. Results: Chickens vaccinated with CMSS-AH mIBS025 ED (group 2) developed the earliest and highest Hemagglutination Inhibition (HI) NDV antibody titer (8log2) followed by standard mIBS025 ED (group 3) (7log2) both conferred complete protection and drastically reduced virus shedding. By contrast, chickens vaccinated with standard mIBS025 DW (group 5) and CMSS-AH mIBS025 DW (group 4) developed low HI NDV antibody titers of 4log2 and 3log2, respectively, which correspondingly conferred only 50% and 60% protection and continuously shed the virulent virus via the oropharyngeal and cloacal routes until the end of the study at 14 dpc. Conclusions: The efficacy of mIBS025 vaccines prepared in a standard vaccine stabilizer or CMSS-AH was affected by the vaccination routes. The groups vaccinated via ED had better protective immunity than those vaccinated via DW.

Molecular identification and characterization of Lumpy skin disease virus emergence from cattle in the northeastern part of Thailand

  • Seerintra, Tossapol;Saraphol, Bhuripit;Wankaew, Sitthichai;Piratae, Supawadee
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.73.1-73.8
    • /
    • 2022
  • Background: Lumpy skin disease (LSD), a disease transmitted by direct and indirect contact with infected cattle, is caused by the Lumpy skin disease virus (LSDV). The disease affects cattle herds in Africa, Europe, and Asia. The clinical signs of LSD range from mild to the appearance of nodules and lesions in the skin leading to severe symptoms that are sometimes fatal with significant livestock economic losses. Objectives: This study aimed to characterize LSDV strains in the blood of infected cattle in Thailand based on the GPCR gene and determine the phylogenetic relationship of LSDV Thailand isolates with published sequences available in the database. Methods: In total, the blood samples of 120 cattle were collected from different farms in four provinces in the northeastern part of Thailand, and the occurrence of LSDV was examined by PCR based on the P32 antigen gene. The genetic diversity of LSDV based on the GPCR gene was analyzed. Results: Polymerase chain reaction assays based on the P32 antigen gene showed that 4.17% (5/120) were positive for LSDV. All positive blood samples were amplified successfully for the GPCR gene. Phylogenetic analysis showed that LSDV Thailand isolates clustered together with LSDVs from China and Russia. Conclusions: The LSD outbreak in Thailand was confirmed, and a phylogenetic tree was constructed to infer the branching pattern of the GPCR gene from the presence of LSDV in Thailand. This is the first report on the molecular characterization of LSDV in cattle in Thailand.

Monitoring Cellular Immune Responses after Consumption of Selected Probiotics in Immunocompromised Mice

  • Kang, Seok-Jin;Yang, Jun;Lee, Na-Young;Lee, Chang-Hee;Park, In-Byung;Park, Si-Won;Lee, Hyeon Jeong;Park, Hae-Won;Yun, Hyun Sun;Chun, Taehoon
    • 한국축산식품학회지
    • /
    • 제42권5호
    • /
    • pp.903-914
    • /
    • 2022
  • Probiotics are currently considered as one of tools to modulate immune responses under specific clinical conditions. The purpose of this study was to evaluate whether oral administration of three different probiotics (Lactiplantibacillus plantarum CJLP243, CJW55-10, and CJLP475) could evoke a cell-mediated immunity in immunodeficient mice. Before conducting in vivo experiments, we examined the in vitro potency of these probiotics for macrophage activation. After co-culture with these probiotics, bone marrow derived macrophages (BMDMs) produced significant amounts of proinflammatory cytokines including interleukin-6 (IL-6), IL-12, and tumor necrosis factor-α (TNF-α). Levels of inducible nitric oxide synthase (inos) and co-stimulatory molecules (CD80 and CD86) were also upregulated in BMDMs after treatment with some of these probiotics. To establish an immunocompromised animal model, we intraperitoneally injected mice with cyclophosphamide on day 0 and again on day 2. Starting day 3, we orally administered probiotics every day for the last 15 d. After sacrificing experimental mice on day 18, splenocytes were isolated and co-cultured with these probiotics for 3 d to measure levels of several cytokines and immune cell proliferation. Results clearly indicated that the consumption of all three probiotic strains promoted secretion of interferon-γ (IFN-γ), IL-1β, IL-6, IL-12, and TNF-α. NK cell cytotoxicity and proliferation of immune cells were also increased. Taken together, our data strongly suggest that consumption of some probiotics might induce cell-mediated immune responses in immunocompromised mice.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

산란계에서 Chlorhexidine-inactivated Salmonella Enteritidis, S. Typhimurium 및 S. Gallinarum 3가 백신의 효능평가 (Evaluation of the protective efficacy of trivalent Salmonella inactivated vaccine including Chlorhexidine-inactivated Salmonella Enteritidis, S. Typhimurium and S. Gallinarum in poultry)

  • 유영주;유정희;허진
    • 한국동물위생학회지
    • /
    • 제46권4호
    • /
    • pp.303-314
    • /
    • 2023
  • Protective efficacy of trivalent Salmonella inactivated vaccine containing Chlorhexidine-inactivated S. Enterltidis (SE), S. Typhimurium (ST), and S. Gallinarum (SG) strains, was evaluated in this study. A total of 70 brown nick layers were divided into 7 groups, A to G, containing 10 hens per group. All hens in groups B to D were intramuscularly immunized with approximately 7×108 cells (3×108 cells of SE+1×108 SE+1×108 cells of ST+3×108 cells of SG) of the trivalent vaccine in 0.5 mL of PBS. All chickens in groups E to G were injected with sterile PBS. All hens of groups B and E, groups C and F, and groups D and G were orally challenged with approximately 2 ×109 CFU of wild-type SE, ST, and SG, respectively. Serum IgG titers and CD3+CD4+ T-cells, and CD3+CD8+ T-cells levels of groups B to D significantly higher than those of group A. In addition, all animals in groups A to C, E and F showed no clinical symptoms and survived after the virulent challenges, whereas one chicken in group D died and all chickens in group G died following the challenge. The protection against wild-type SE and ST in liver, spleen, cecum, and cloaca of groups B and C chickens was significant effective as compared with those in groups E and F. These indicate that the trivalent inactivated vaccine can be an effective tool for prevention of Salmonella infections by inducing robustly protective immune responses and cellular immune response in chickens.

New typhoid vaccine using sponge-like reduced protocol: development and evaluation

  • Rehab Bahy;Asmaa Gaber;Hamdallah Zedan;Mona Mabrook
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권1호
    • /
    • pp.70-76
    • /
    • 2023
  • Purpose: Typhoid remains a major health problem, especially in the developing world. Furthermore, the emergence of multidrug-resistant and extensively drug-resistant strains of Salmonella typhi added a sense of urgency to develop more effective typhoid vaccines, one of which is bacterial ghosts (BGs), prepared by both genetic and chemical means. The chemical method includes incubation with numerous agents for a short time at their minimum inhibitory or minimum growth concentrations. This study included the preparation of BGs by a sponge-like reduced protocol (SLRP). Materials and Methods: Critical concentrations of sodium dodecyl sulfate, NaOH, and H2O2 were used. Moreover, high-quality BGs were visualized by scanning electron microscope (SEM). Subculturing was used to confirm the absence of vital cells. Besides, the concentrations of the released DNA and protein were estimated spectrophotometrically. In addition, the integrity of cells was proved by visualizing Gram-stained cells using a light microscope. Furthermore, a comparison between the immunogenicity and safety of the prepared vaccine and the available whole-cell killed vaccine was established. Results: Improved preparation of high-quality BGs of S. typhi, visualized by SEM, revealed punctured cells with intact outer shells. Moreover, the absence of vital cells was confirmed by subculturing. At the same time, the release of respective amounts of proteins and DNA is another evidence of BGs' production. Additionally, the challenge test provided evidence that the prepared BGs are immunogenic and have the same efficacy as the whole cell vaccine. Conclusion: The SLRP provided a simple, economical, and feasible method for BGs preparation.

Novel Qnr Families as Conserved and Intrinsic Quinolone Resistance Determinants in Aeromonas spp.

  • Sang-Gyu Kim;Bo-Eun Kim;Jung Hun Lee;Dae-Wi Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1276-1286
    • /
    • 2024
  • The environment has been identified as an origin, reservoir, and transmission route of antibiotic resistance genes (ARGs). Among diverse environments, freshwater environments have been recognized as pivotal in the transmission of ARGs between opportunistic pathogens and autochthonous bacteria such as Aeromonas spp. In this study, five environmental strains of Aeromonas spp. exhibiting multidrug resistance (MDR) were selected for whole-genome sequencing to ascertain their taxonomic assignment at the species-level and to delineate their ARG repertoires. Analyses of their genomes revealed the presence of one protein almost identical to AhQnr (A. hydrophila Qnr protein) and four novel proteins similar to AhQnr. To scrutinize the classification and taxonomic distribution of these proteins, all Aeromonas genomes deposited in the NCBI RefSeq genome database (1,222 genomes) were investigated. This revealed that these Aeromonas Qnr (AQnr) proteins are conserved intrinsic resistance determinants of the genus, exhibiting species-specific diversity. Additionally, structure prediction and analysis of contribution to quinolone resistance by AQnr proteins of the isolates, confirmed their functionality as quinolone resistance determinants. Given the origin of mobile qnr genes from aquatic bacteria and the crucial role of Aeromonas spp. in ARG dissemination in aquatic environments, a thorough understanding and strict surveillance of AQnr families prior to the clinical emergence are imperative. In this study, using comparative genome analyses and functional characterization of AQnr proteins in the genus Aeromonas, novel Aeromonas ARGs requiring surveillance has suggested.