Browse > Article
http://dx.doi.org/10.4014/jmb.2107.07052

An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine  

Li, Wenyu (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Yin, Fan (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Bu, Zixuan (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Liu, Yuying (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Zhang, Yongqing (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Chen, Xiabing (Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology)
Li, Shaowen (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Li, Lu (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Zhou, Rui (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Huang, Qi (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.3, 2022 , pp. 278-286 More about this Journal
Abstract
Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.
Keywords
Twin-arginine translation (Tat) system; Escherichia coli; Streptococcus suis; antigen secretion; live vector vaccine; immunoprotection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akeda Y, Kimura T, Yamasaki A, Kodama T, Iida T, Honda T, et al. 2012. Functional cloning of Vibrio parahaemolyticus type III secretion system 1 in Escherichia coli K-12 strain as a molecular syringe. Biochem. Biophys. Res. Commun. 427: 242-247.   DOI
2 Gao W, Yin J, Bao L, Wang Q, Hou S, Yue Y, et al. 2018. Engineering extracellular expression systems in Escherichia coli based on transcriptome analysis and cell growth state. ACS Synth. Biol. 7: 1291-1302.   DOI
3 Casadaban MJ. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104: 541-555.   DOI
4 Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173-1183.   DOI
5 Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang YJ, et al. 2015. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 31: 13-21.   DOI
6 Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, et al. 2017. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc. Natl. Acad. Sci. USA 114: E1958-e1967.
7 Li W, Liu L, Qiu D, Chen H, Zhou R. 2010. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int. J. Med. Microbiol. 300: 482-488.   DOI
8 Segura M. 2015. Streptococcus suis vaccines: candidate antigens and progress. Expert Rev. Vaccines 14: 1587-1608.   DOI
9 Lin IY, Van TT, Smooker PM. 2015. Live-attenuated bacterial vectors: Tools for vaccine and therapeutic agent delivery. Vaccines (Basel) 3: 940-972.   DOI
10 Jiang H, Hu Y, Yang M, Liu H, Jiang G. 2017. Enhanced immune response to a dual-promoter anti-caries DNA vaccine orally delivered by attenuated Salmonella typhimurium. Immunobiology 222: 730-737.   DOI
11 Jia B, Jeon CO. 2016. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol. 6: 160196.   DOI
12 Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 5: 172.   DOI
13 Anne J, Economou A, Bernaerts K. 2017. Protein secretion in Gram-positive bacteria: From multiple pathways to biotechnology. Curr. Top. Microbiol. Immunol. 404: 267-308.
14 Palmer T, Berks BC. 2012. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10: 483-496.   DOI
15 Zhang J, Shi Z, Kong FK, Jex E, Huang Z, Watt JM, et al. 2006. Topical application of Escherichia coli-vectored vaccine as a simple method for eliciting protective immunity. Infect. Immun. 74: 3607-3617.   DOI
16 Jones B, Pascopella L, Falkow S. 1995. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr. Opin. Immunol. 7: 474-478.   DOI
17 Nhan NT, Gonzalez de Valdivia E, Gustavsson M, Hai TN, Larsson G. 2011. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Fact. 10: 22.   DOI
18 Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. 2001. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204: 572-581.   DOI
19 Karlsson AJ, Lim HK, Xu H, Rocco MA, Bratkowski MA, Ke A, et al. 2012. Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins. J. Mol. Biol. 416: 94-107.   DOI
20 Natale P, Bruser T, Driessen AJ. 2008. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. Biochim. Biophys. Acta 1778: 1735-1756.   DOI
21 Jacobs AA, van den Berg AJ, Loeffen PL. 1996. Protection of experimentally infected pigs by suilysin, the thiol-activated haemolysin of Streptococcus suis. Vet. Rec. 139: 225-228.   DOI
22 Buttaro C, Fruehauf JH. 2010. Engineered E. coli as vehicles for targeted therapeutics. Curr. Gene Ther. 10: 27-33.   DOI
23 Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. 2014. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microbes Infect. 3: e45.
24 Nicolay T, Vanderleyden J, Spaepen S. 2015. Autotransporter-based cell surface display in Gram-negative bacteria. Crit. Rev. Microbiol. 41: 109-123.   DOI
25 Byrd W, Ruiz-Perez F, Setty P, Zhu C, Boedeker EC. 2017. Secretion of the Shiga toxin B subunit (Stx1B) via an autotransporter protein optimizes the protective immune response to the antigen expressed in an attenuated E. coli (rEPEC E22∆ler) vaccine strain. Vet. Microbiol. 211: 180-188.   DOI
26 Berks BC, Palmer T, Sargent F. 2003. The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 47: 187-254.   DOI
27 Frain KM, Robinson C, van Dijl JM. 2019. Transport of folded proteins by the Tat system. Protein J. 38: 377-388.   DOI
28 Tarry M, Arends SJ, Roversi P, Piette E, Sargent F, Berks BC, et al. 2009. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J. Mol. Biol. 386: 504-519.   DOI
29 Chen T, Wang C, Hu L, Lu H, Song F, Zhang A, et al. 2021. Evaluation of the immunoprotective effects of IF-2 GTPase and SSU05-1022 as a candidate for a Streptococcus suis subunit vaccine. Future Microbiol. 16: 721-729.   DOI
30 Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. 2016. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2: 16183.   DOI
31 Ize B, Stanley NR, Buchanan G, Palmer T. 2003. Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol. Microbiol. 48: 1183-1193.   DOI
32 Huang Q, Palmer T. 2017. Signal peptide hydrophobicity modulates interaction with the twin-arginine translocase. mBio 8: e00909-17.
33 Palmer T, Stansfeld PJ. 2020. Targeting of proteins to the twin-arginine translocation pathway. Mol. Microbiol. 113: 861-871.   DOI
34 Ding C, Ma J, Dong Q, Liu Q. 2018. Live bacterial vaccine vector and delivery strategies of heterologous antigen: a review. Immunol. Lett. 197: 70-77.   DOI
35 Gopal GJ, Kumar A. 2013. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 32: 419-425.   DOI
36 Burdette LA, Leach SA, Wong HT, Tullman-Ercek D. 2018. Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb Cell Fact. 17: 196.   DOI
37 Zhu C, Ruiz-Perez F, Yang Z, Mao Y, Hackethal VL, Greco KM, et al. 2006. Delivery of heterologous protein antigens via hemolysin or autotransporter systems by an attenuated ler mutant of rabbit enteropathogenic Escherichia coli. Vaccine 24: 3821-3831.   DOI
38 Xu C, Zhang BZ, Lin Q, Deng J, Yu B, Arya S, et al. 2018. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect. Dis. 18: 195.   DOI
39 Dumesnil A, Martelet L, Grenier D, Auger JP, Harel J, Nadeau E, et al. 2019. Enolase and dipeptidyl peptidase IV protein sub-unit vaccines are not protective against a lethal Streptococcus suis serotype 2 challenge in a mouse model of infection. BMC Vet. Res. 15: 448.   DOI
40 Aguilera-Herce J, Garcia-Quintanilla M, Romero-Flores R, McConnell MJ, Ramos-Morales F. 2019. A Live Salmonella vaccine delivering PcrV through the Type III secretion system protects against Pseudomonas aeruginosa. mSphere 4: e00116-19.
41 Zhou Y, Wang Y, Deng L, Zheng C, Yuan F, Chen H, et al. 2015. Evaluation of the protective efficacy of four novel identified membrane associated proteins of Streptococcus suis serotype 2. Vaccine 33: 2254-2260.   DOI
42 Albiniak AM, Matos CF, Branston SD, Freedman RB, Keshavarz-Moore E, Robinson C. 2013. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli. FEBS J. 280: 3810-3821.   DOI
43 Zhang A, Chen B, Mu X, Li R, Zheng P, Zhao Y, et al. 2009. Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2. Vaccine 27: 1348-1353.   DOI
44 Alanen HI, Walker KL, Lourdes Velez Suberbie M, Matos CF, Bonisch S, Freedman RB, et al. 2015. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. Biochim. Biophys. Acta 1853: 756-763.   DOI
45 Browning DF, Richards KL, Peswani AR, Roobol J, Busby SJW, Robinson C. 2017. Escherichia coli "TatExpress" strains super-secrete human growth hormone into the bacterial periplasm by the Tat pathway. Biotechnol. Bioeng. 114: 2828-2836.   DOI
46 Wang Y, Yang W, Wang Q, Qu J, Zhang Y. 2013. Presenting a foreign antigen on live attenuated Edwardsiella tarda using twin-arginine translocation signal peptide as a multivalent vaccine. J. Biotechnol. 168: 710-717.   DOI
47 Tan C, Zhang A, Chen H, Zhou R. 2019. Recent proceedings on prevalence and pathogenesis of Streptococcus suis. Curr. Issues Mol. Biol. 32: 473-520.
48 da Silva AJ, Zangirolami TC, Novo-Mansur MT, Giordano Rde C, Martins EA. 2014. Live bacterial vaccine vectors: an overview. Braz J. Microbiol. 45: 1117-1129.   DOI