• Title/Summary/Keyword: climate model

Search Result 2,541, Processing Time 0.037 seconds

An Exploration of the Influencing Factors and Development of Effective Models of Science Teacher Efficiency (과학 교사의 효능감 관련 요인 탐색을 통한 과학 교사 효능감 형성 모형 개발)

  • Choi, Sung-Youn;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.6
    • /
    • pp.693-718
    • /
    • 2010
  • This study investigated secondary school science teachers' experiences to explore the influencing factors in science teachers efficiency (STE). The participants, thirty three secondary school science teachers who have more than four years of teaching experience, were interviewed about describing each teacher's experience throughout one's years of teaching. The grounded theory introduced by Strauss and Corbin (1998) was used to analyze the data in this study. The results of paradigm analysis revealed that STE is influenced by 125 concepts, 38 sub-categories, and 16 categories. In a paradigm model, the central phenomenon was 'constructing STE', and the causal condition was 'want to be a teacher' as career choice motivation. The contextual conditions that have an affect on the central phenomenon were 'self awareness of the teacher' and 'social awareness of the teacher.' The mediate conditions, which facilitated or restrained the action/interaction strategies, were 'societal tendency', 'school climate', and 'personal context.' The action/interaction strategies to control the phenomenon were 'following the line,' 'identifying effective teaching strategies,' 'taking teacher education programs,' and 'contributing to school improvement.' The consequences were 'teacher's self awareness', 'challenge,' and 'stagnating in teaching.' The overall conclusion drawn from this research is that, the definition of STE is beliefs in science teachers' capabilities to set up objects in some school teaching context and, organize and execute the course of action required to attain these. Additionally, STE has three dimensions of teacher's behaviors: science instructional efficiency, efficiency in engaging students, and efficiency in managing school conditions. This study offers insight into the nature of STE and theoretical framework. These findings may give science teachers and teacher educators the practical knowledge necessary to build effective training programs and interventions that would help increase STE and facilitate effective teaching.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

A Study on Establishment of the Optimum Mountain Meteorological Observation Network System for Forest Fire Prevention (산불 방지를 위한 산악기상관측시스템 구축방안)

  • Lee, Si-Young;Chung, Il-Ung;Kim, Sang-Kook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • In this study, we constructed a forest fire danger map in the Yeongdong area of Gangwon-do and Northeastern area of Gyeongsangbuk-do using a forest fire rating model and geographical information system (GIS). We investigated the appropriate positions of the automatic weather station (AWS) and a comprehensive network solution (a system including measurement, communication and data processing) for the establishment of an optimum mountain meteorological observation network system (MMONS). Also, we suggested a possible plan for combining the MMONS with unmanned monitoring camera systems and wireless relay towers operated by local governments and the Korea Forest Service for prevention of forest fire.

Retrieval of the Variation of Optical Characteristics of Asian Dust Plume according to their Vertical Distributions using Multi-wavelength Raman LIDAR System (다파장 라만 라이다 관측을 통한 황사의 이동 고도 분포에 따른 광학적 특성 변화 규명)

  • Shin, Sung-Kyun;Park, Young-San;Choi, Byoung-Choel;Lee, Kwonho;Shin, Dongho;Kim, Young J.;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.597-605
    • /
    • 2014
  • The continuous observations for atmospheric aerosols were conducted during 3 years (2009 to 2011) by using Gwangju Institute of Science and Technology (GIST) multi-wavelength Raman lidar at Gwangju, Korea ($35.10^{\circ}N$, $126.53^{\circ}E$). The aerosol depolarization ratios calculated from lidar data were used to identify the Asian dust layer. The optical properties of Asian dust layer were different according to its vertical distribution. In order to investigate the difference between the optical properties of each individual dust layers, the transport pathway and the transport altitude of Asian dust were analyzed by Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We consider that the variation of optical properties were influenced not only their transport pathway but also their transport height when it passed over anthropogenic pollution source regions in China. The lower particle depolarization ratio values of $0.12{\pm}0.01$, higher lidar ratio of $67{\pm}9sr$ and $68{\pm}9sr$ at 355 nm and 532 nm, respectively, and higher ${\AA}ngstr\ddot{o}m$ exponent of $1.05{\pm}0.57$ which are considered as the optical properties of pollution were found. In contrast with this, the higher particle depolarization ratio values of $0.21{\pm}0.09$, lower lidar ratio of $48{\pm}5sr$ and $46{\pm}4sr$ at 355 nm and 532 nm, respectively, and lower ${\AA}ngstr\ddot{o}m$ exponent of $0.57{\pm}0.24$ which are considered as the optical properties of dust were found. We found that the degree of mixing of anthropogenic pollutant aerosols in mixed Asian dust govern the variation of optical properties of Asian dust and it depends on their altitude when it passed over the polluted regions over China.

The Process of Hillslope Denudation Since the Last Glacial Maximum Near Tangjeong-myeon, Asan-si, Central Korea (아산시(牙山市) 탕정면(湯井面) 일대(一帶) 최종빙기(最終氷期) 최성기(最盛期) 이후(以後) 구사면(丘斜面)의 삭박과정(削剝過程))

  • PARK, Ji-Hoon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.67-83
    • /
    • 2008
  • To find out the process of hillslope denudation since the Last Glacial Maximum in Asan area, we conducted the stratiform interpretation and carbon age measurements with the collected samples through trenching in the valley bottom of 'Agol' located in the lower stream of Magok stream. The results are as follows. 11 inorganic and 8 organic matter layers were confirmed at the point of trench MG1 in the subject area, 7 inorganic and 3 organic at the point of trench MG2, and 5 inorganic and 3 organic at the point of trench MG3, respectively. The frequency of hillslope denudation, hillslope mass movement, which had occurred in the unstable environment of back hillslope at the point of MG 1, was 11 times (8 times before about 2,900yrBP, twice in between about 2,900~1,900yrBP, and once after about 1,900yrBP) as a whole. The frequency of moor which had formed in the comparatively stable environment of back hillslope was 9 times (5 times before about 3,000yrBP, twice in between 3,000~2,800yrBP, and once in between 2,200~1,900yrBP) at minimum. The frequency of back hillslope denudation at the point of MG2 was totally 7 times (4 times before about 1,900yrBP and 3 times after about 1,900yrBP) and the moor formations were 3 times (twice before about 1,900yrBP and once after 1,900yrBP). The frequency of back hillslope denudation at the point of MG3 was totally 5 times (3 times before about 1,900yrBP and twice after about 1,900yrBP) and the moor formations were 3 times (twice before about 1,900yrBP and once after 1,900yrBP). The hillslope surrounded by valley bottom of 'Agol' was confirmed as the pile up of various inorganic matters by the mass movement such as sand or sandy gravel in the valley bottom of the subject area, formed not once but several times of denudation. We could know that the hillslope denudation cycle converged to the time period of $10^2{\sim}10^3$ years. These results will be an important basic data for restoring hillslope denudation process near Asan and changing climate of the Late Quaternary Period.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Topographic Factors Computation in Island: A Comparison of Different Open Source GIS Programs (오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로)

  • Lee, Bora;Lee, Ho-Sang;Lee, Gwang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.903-916
    • /
    • 2021
  • An area's topography refers to the shape of the earth's surface, described by its elevation, slope, and aspect, among other features. The topographical conditions determine energy flowsthat move water and energy from higher to lower elevations, such as how much solar energy will be received and how much wind or rain will affect it. Another common factor, the topographic wetness index (TWI), is a calculation in digital elevation models of the tendency to accumulate water per slope and unit area, and is one of the most widely referenced hydrologic topographic factors, which helps explain the location of forest vegetation. Analyses of topographical factors can be calculated using a geographic information system (GIS) program based on digital elevation model (DEM) data. Recently, a large number of free open source software (FOSS) GIS programs are available and developed for researchers, industries, and governments. FOSS GIS programs provide opportunitiesfor flexible algorithms customized forspecific user needs. The majority of biodiversity in island areas exists at about 20% higher elevations than in land ecosystems, playing an important role in ecological processes and therefore of high ecological value. However, island areas are vulnerable to disturbances and damage, such as through climate change, environmental pollution, development, and human intervention, and lacks systematic investigation due to geographical limitations (e.g. remoteness; difficulty to access). More than 4,000 of Korea's islands are within a few hours of its coast, and 88% are uninhabited, with 52% of them forested. The forest ecosystems of islands have fewer encounters with human interaction than on land, and therefore most of the topographical conditions are formed naturally and affected more directly by weather conditions or the environment. Therefore, the analysis of forest topography in island areas can be done more precisely than on its land counterparts, and therefore has become a major focus of attention in Korea. This study is focused on calculating the performance of different topographical factors using FOSS GIS programs. The test area is the island forests in Korea's south and the DEM of the target area was processed with GRASS GIS and SAGA GIS. The final slopes and TWI maps were produced as comparisons of the differences between topographic factor calculations of each respective FOSS GIS program. Finally, the merits of each FOSS GIS program used to calculate the topographic factors is discussed.

Thermal Effects on the Development, Fecundity and Life Table Parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on Yardlong Bean (Vigna unguiculata subsp. sesquipedalis (L.)) (갓끈동부콩에서 아카시아진딧물[Aphis craccivora Koch (Hemiptera: Aphididae)]의 온도발육, 성충 수명과 산란 및 생명표분석)

  • Cho, Jum Rae;Kim, Jeong-Hwan;Choi, Byeong-Ryeol;Seo, Bo-Yoon;Kim, Kwang-Ho;Ji, Chang Woo;Park, Chang-Gyu;Ahn, Jeong Joon
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.261-269
    • /
    • 2018
  • The cowpea aphid Aphis craccivora Koch (Hemiptera: Aphididae) is a polyphagous species with a worldwide distribution. We investigated the temperature effects on development periods of nymphs, and the longevity and fecundity of apterous female of A. craccivora. The study was conducted at six constant temperatures of 10.0, 15.0, 20.0, 25, 30.0, and $32.5^{\circ}C$. A. craccivora developed successfully from nymph to adult stage at all temperatures subjected. The developmental rate of A. craccivora increased as temperature increased. The lower developmental threshold (LT) and thermal constant (K) of A. craccivora nymph stage were estimated by linear regression as $5.3^{\circ}C$ and 128.4 degree-days (DD), respectively. Lower and higher threshold temperatures (TL, TH and TH-TL, respectively) were calculated by the Sharpe_Schoolfield_Ikemoto (SSI) model as $17.0^{\circ}C$, $34.6^{\circ}C$ and $17.5^{\circ}C$. Developmental completion of nymph stages was described using a three-parameter Weibull function. Life table parameters were estimated. The intrinsic rate of increase was highest at $25^{\circ}C$, while the net reproductive rate was highest at $20^{\circ}C$. Biological characteristics of A. craccivora populations from different geographic areas were discussed.

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring (봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock;Yun, Eun-jeong;Ju, Okjung;Park, Jong Sun;Shin, Yong Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.