DOI QR코드

DOI QR Code

Retrieval of the Variation of Optical Characteristics of Asian Dust Plume according to their Vertical Distributions using Multi-wavelength Raman LIDAR System

다파장 라만 라이다 관측을 통한 황사의 이동 고도 분포에 따른 광학적 특성 변화 규명

  • Shin, Sung-Kyun (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Park, Young-San (Applied Meteorology Research Division, National Institute of Meteorological Research) ;
  • Choi, Byoung-Choel (Applied Meteorology Research Division, National Institute of Meteorological Research) ;
  • Lee, Kwonho (Department of Geoinformatics Engineering, Kyungil University) ;
  • Shin, Dongho (Air Quality Forecasting Center, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Kim, Young J. (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Noh, Youngmin (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
  • 신성균 (광주과학기술원 환경공학부) ;
  • 박영산 (국립기상연구소 응용기상연구과) ;
  • 최병철 (국립기상연구소 응용기상연구과) ;
  • 이권호 (경일대학교 공간정보공학과) ;
  • 신동호 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 김영준 (광주과학기술원 환경공학부) ;
  • 노영민 (광주과학기술원 환경공학부)
  • Received : 2014.09.11
  • Accepted : 2014.10.16
  • Published : 2014.10.31

Abstract

The continuous observations for atmospheric aerosols were conducted during 3 years (2009 to 2011) by using Gwangju Institute of Science and Technology (GIST) multi-wavelength Raman lidar at Gwangju, Korea ($35.10^{\circ}N$, $126.53^{\circ}E$). The aerosol depolarization ratios calculated from lidar data were used to identify the Asian dust layer. The optical properties of Asian dust layer were different according to its vertical distribution. In order to investigate the difference between the optical properties of each individual dust layers, the transport pathway and the transport altitude of Asian dust were analyzed by Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We consider that the variation of optical properties were influenced not only their transport pathway but also their transport height when it passed over anthropogenic pollution source regions in China. The lower particle depolarization ratio values of $0.12{\pm}0.01$, higher lidar ratio of $67{\pm}9sr$ and $68{\pm}9sr$ at 355 nm and 532 nm, respectively, and higher ${\AA}ngstr\ddot{o}m$ exponent of $1.05{\pm}0.57$ which are considered as the optical properties of pollution were found. In contrast with this, the higher particle depolarization ratio values of $0.21{\pm}0.09$, lower lidar ratio of $48{\pm}5sr$ and $46{\pm}4sr$ at 355 nm and 532 nm, respectively, and lower ${\AA}ngstr\ddot{o}m$ exponent of $0.57{\pm}0.24$ which are considered as the optical properties of dust were found. We found that the degree of mixing of anthropogenic pollutant aerosols in mixed Asian dust govern the variation of optical properties of Asian dust and it depends on their altitude when it passed over the polluted regions over China.

광주과학기술원의 다파장 라만 라이다를 이용한 에어로졸 연속관측이 2009년부터 2011년까지 3년간 수행되었다. 장기 연속 관측을 통해 얻어진 라이다 신호들의 분석을 통해 편광소멸도를 산출해 내었고, 편광소멸도를 통하여 황사 층을 구분해 내었다. 구분된 황사의 층의 광학적 특징들이 관측 고도에 따라 다르다는 것을 신호의 분석으로부터 밝혀졌다. 이러한 광학적 특징의 차이를 규명하기 위하여, HYSPLIT 모델을 이용하여 각각 관측된 황사 층들의 유입 경로와 이동 중 고도를 분석하였다. 이러한 황사의 관측 고도에 따른 광학적 특성의 변화는 황사가 장거리 이동 중 통과한 오염물질 발생 지역에서 발생한 오염물질과의 혼합으로부터 기인한 것으로 사료된다. 특히 오염물질 발생 지역을 지날 때의 황사 층의 고도는 황사의 광학적 특성 변화에 가장 큰 영향을 미치는 것으로 판단된다. 3년간 라이다 관측 시스템으로 관측한 황사 중, 중국산업지역 및 인구밀집도가 높은 지역 등과 같은 인위적 기원의 오염물질 발생 지역을 통과할 때의 고도가 1 km 이하 일 때, $0.12{\pm}0.01$의 낮은 편광소멸도, 355 nm와 532 nm 파장에서 각각 $67{\pm}9sr$, $68{\pm}9sr$의 낮은 라이다비, $1.05{\pm}0.57$의 낮은 옹스트롬 지수(${\AA}ngstr\ddot{o}m$ expon) 보였으며, 이는 오염물질이 갖는 광학적 특성 값과 유사하다. 이와 반면 황사가 3 km 이상의 높은 고도로 오염물질 발생 지역을 통과한 경우는 $0.21{\pm}0.09$의 편광소멸도, 355 nm와 532 nm 파장에서 각각 $48{\pm}5sr$, $46{\pm}4sr$의 라이다 비, $0.57{\pm}0.24$의 옹스토롬 지수를 보이며 이는 순수황사의 광학적 특성과 유사하다. 이는 황사가 중국 오염물질 발생지역을 통과할 때의 고도가 혼합상태의 황사 전체의 광학적 특성에 큰 영향을 미치는 것으로 판단되며, 낮은 고도에서는 오염물질과의 혼합의 정도가 증가하여, 오염물질의 광학적 특성이 우세하게 나타나는 반면, 높은 고도에서는 오염물질과 황사의 혼합이 상대적으로 적게 일어난다고 사료된다.

Keywords

References

  1. Ansmann, A., F. Wagner, D. Muller, D. Althausen, A. Herber, W. von Hoyningen-Huene, and U. Wandinger, 2002. European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry, Journal of Geophysical Research: Atmospheres (1984-2012), 107(D15): AAC 8-1-AAC 8-14.
  2. Behrendt, A., and T. Nakamura, 2002. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature, Optics express, 10(16): 805-817. https://doi.org/10.1364/OE.10.000805
  3. Cairo, F., G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, 1999. Comparison of various linear depolarization parameters measured by lidar, Applied Optics, 38(21): 4425-4432. https://doi.org/10.1364/AO.38.004425
  4. Carrico, C.M., P. Kus, M.J. Rood, P.K. Quinn, and T.S. Bates, 2003. Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity, Journal of Geophysical Research: Atmospheres (1984-2012), 108(D23), doi: 10.1029/2003JD003405.
  5. Chen, W.-N., Y.-W. Chen, C.C. Chou, S.-Y. Chang, P.-H. Lin, and J.-P. Chen, 2009. Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan, Atmospheric Environment, 43(17): 2700-2708. https://doi.org/10.1016/j.atmosenv.2009.02.059
  6. Draxler, R.R., and G. Rolph, 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://www. arl. noaa. gov/ready/hysplit4. html). NOAA Air Resources Laboratory, Silver Spring, edited, Md.
  7. Durant, A.J., S.P. Harrison, I.M. Watson, and Y. Balkanski, 2009. Sensitivity of direct radiative forcing by mineral dust to particle characteristics, Progress in Physical Geography, 33(1): 80-102. https://doi.org/10.1177/0309133309105034
  8. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, Journal of Geophysical Research: Atmospheres(1984-2012), 108(D23), doi: 10.1029/2003JD003550.
  9. Husar, R.B., D. Tratt, B.A. Schichtel, S. Falke, F. Li, D. Jaffe, S. Gasso, T. Gill, N.S. Laulainen, and F. Lu, 2001. Asian dust events of April 1998, Journal of Geophysical Research: Atmospheres (1984-2012), 106(D16): 18317-18330. https://doi.org/10.1029/2000JD900788
  10. Liu, M., D.L. Westphal, S. Wang, A. Shimizu, N. Sugimoto, J. Zhou, and Y. Chen, 2003. A highresolution numerical study of the Asian dust storms of April 2001, Journal of Geophysical Research: Atmospheres (1984-2012), 108(D23), doi: 10.1029/2002JD003178.
  11. Liu, Z., N. Sugimoto, and T. Murayama, 2002. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar, Applied Optics, 41(15): 2760-2767. https://doi.org/10.1364/AO.41.002760
  12. Mikami, M., G. Shi, I. Uno, S. Yabuki, Y. Iwasaka, M. Yasui, T. Aoki, T. Tanaka, Y. Kurosaki, and K. Masuda, 2006. Aeolian dust experiment on climate impact: An overview of Japan-China joint project ADEC, Global and Planetary Change, 52(1): 142-172. https://doi.org/10.1016/j.gloplacha.2006.03.001
  13. Murayama, T., 2002. Optical properties of Asian dust aerosol lofted over Tokyo observed by Raman lidar, Lidar Remote Sensing in Atmospheric and Earth Sciences, edited by Bissonnette, LR, Roy, G., and Vallee, G., Defence R&D Canada, Val-Belair, 1, 331-334.
  14. Murayama, T., H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, 1999. Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles, Journal of Geophysical Research: Atmospheres (1984-2012), 104(D24): 31781-31792. https://doi.org/10.1029/1999JD900503
  15. Muller, D., K. Franke, A. Ansmann, D. Althausen, and F. Wagner, 2003. Indo-Asian pollution during INDOEX: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations, Journal of Geophysical Research: Atmospheres (1984-2012), 108(D19), doi: 10.1029/2003JD003538.
  16. Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama, 2007. Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmospheric Research, 86(1), 76-87. https://doi.org/10.1016/j.atmosres.2007.03.006
  17. Noh, Y.M., Y.J. Kim, and D. Muller, 2008. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmospheric Environment, 42(9): 2208-2224. https://doi.org/10.1016/j.atmosenv.2007.11.045
  18. Sakai, T., T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, and D. Troshkin, 2002. Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan, Atmospheric Environment, 36(35): 5479-5489. https://doi.org/10.1016/S1352-2310(02)00664-7
  19. Shimizu, A., N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, 2004. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia, Journal of Geophysical Research: Atmospheres (1984-2012), 109(D19), doi: 10.1029/2002JD003253.
  20. Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 2013. Climate change 2013: The physical science basis, Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5)(Cambridge Univ Press, New York).
  21. Sun, Y., G. Zhuang, Y. Wang, X. Zhao, J. Li, Z. Wang, and Z. An, 2005. Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway, Journal of Geophysical Research: Atmospheres (1984-2012), 110(D24), doi: 10.1029/2005JD006054.
  22. Tesche, M., D. Moller, S. Gross, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, 2011. Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements, Tellus B, 63(4): 677-694. https://doi.org/10.1111/j.1600-0889.2011.00549.x
  23. Yu, X., T. Cheng, J. Chen, and Y. Liu, 2006. A comparison of dust properties between China continent and Korea, Japan in East Asia, Atmospheric Environment, 40(30): 5787-5797. https://doi.org/10.1016/j.atmosenv.2006.05.013
  24. Zhang, Z., G. Engling, C.-Y. Lin, C. C.-K. Chou, S.-C. C. Lung, S.-Y. Chang, S. Fan, C.-Y. Chan, and Y.-H. Zhang, 2010. Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China, Atmospheric Environment, 44(26): 3187-3195. https://doi.org/10.1016/j.atmosenv.2010.05.024

Cited by

  1. Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio vol.32, pp.2, 2016, https://doi.org/10.7780/kjrs.2016.32.2.6
  2. Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio vol.32, pp.2, 2016, https://doi.org/10.7780/kjrs.2016.32.2.3
  3. Aerosol Optical Properties Retrieval and Separation of Asian Dust using AERONET Sun/Sky Radiometer Measurement at the Asian Dust Source Region vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.4
  4. A Study on the Variation of Aerosol Lidar Ratio according to Aerosol Types on Korea Based on AERONET Sun/Sky Radiometer Data vol.36, pp.1, 2020, https://doi.org/10.5572/kosae.2020.36.1.084
  5. 두파장 스캐닝 라이다 시스템을 이용한 고해상도 미세먼지 질량 농도 산출 vol.36, pp.6, 2014, https://doi.org/10.7780/kjrs.2020.36.6.3.5
  6. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9