• Title/Summary/Keyword: climate mitigation

Search Result 376, Processing Time 0.03 seconds

Utility of Climate Model Information For Water Resources Management in Korea

  • Jeong, Chang-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.37-45
    • /
    • 2008
  • It is expected that conditions of water resources will be changed in Korea in accordance with world wide climate change. In order to deal with this problem and find a way of minimizing the effect of future climate change, the usefulness of climate model simulation information is examined in this study. The objective of this study is to assess the applicability of GCM (General Circulation Model) information for Korean water resources management through uncertainty analysis. The methods are based on probabilistic measures of the effectiveness of GCM simulations of an indicator variable for discriminating high versus low regional observations of a target variable. The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. An estimator that accounts for climate model simulation and spatial association between the GCM data and observed data is used. Atmospheric general circulation model (AGCM) simulations done by ECMWF (European Centre for Medium-Range Weather Forecasts) with a resolution of $2^{\circ}{\times}2^{\circ}$, and METRI (Meteorological Research Institute, Korea) with resolutions of $2^{\circ}{\times}2^{\circ}$ and $4^{\circ}{\times}5^{\circ}$, were used for indicator variables, while observed mean areal precipitation (MAP) data, discharge data and mean areal temperature data on the seven major river basins in Korea were used for target variables. The results show that GCM simulations are useful in discriminating the high from the low of the observed precipitation, discharge, and temperature values. Temperature especially can be useful regardless of model and season.

Estimation of Regional Probable Rainfall based on Climate Change Scenarios (기후변화 시나리오에 따른 지역별 확률강우량)

  • Kim, Young-Ho;Yeo, Chang-Geon;Seo, Geun-Soon;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This research proposes the suitable method for estimating the future probable rainfall based in 2100 on the observed rainfall data from main climate observation stations in Korea and the rainfall data from the A1B climate change scenario in the Korea Meteorological Administration. For all those, the frequency probable rainfall in 2100 was estimated by the relationship between average values of 24-hours annual maximum rainfalls and related parameters. Three methods to estimate it were introduced; First one is the regressive analysis method by parameters of probable distribution estimated by observed rainfall data. In the second method, parameters of probable distribution were estimated with the observed rainfall data. Also the rainfall data till 2100 were estimated by the A1B scenario of the Korea Meteorological Administration. Last method was that parameters of probable distribution and probable rainfall were estimated by the A1B scenario of the Korea Meteorological Administration. The estimated probable rainfall by the A1B scenario was smaller than the observed rainfall data, so it is required that the estimated probable rainfall was calibrated by the quantile mapping method. After that calibration, estimated probable rainfall data was averagely became approximate 2.3 to 3.0 times. When future probable rainfall was the estimated by only observed rainfall, estimated probable rainfall was overestimated. When future probable rainfall was estimated by the A1B scenario, although it was estimated by similar pattern with observed rainfall data, it frequently does not consider the regional characteristics. Comparing with average increased rate of 24-hours annual maximum rainfall and increased rate of probable rainfall estimated by three methods, optimal method of estimated future probable rainfall would be selected for considering climate change.

Climate Change Impacts on Agricultural Drought for Major Upland Crops using Soil Moisture Model -Focused on the Jeollanam-do- (토양수분모형을 이용한 주요 밭작물의 미래 가뭄 전망 -전라남도 지역을 중심으로-)

  • Hong, Eun-Mi;Nam, Won-Ho;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.65-76
    • /
    • 2015
  • Estimating water requirements for upland crops are characterized by standing soil moisture condition during the entire crop growth period. However, scarce rainfall and intermittent dry spells often cause soil moisture depletion resulting in unsaturated condition in the fields. Changes in rainfall patterns due to climate change have significant influence on the increasing the occurrence of extreme soil moisture depletion. Therefore, it is necessary to evaluate agricultural drought for upland crop water planning and management in the context of climate change. The objective of this study is to predict the impacts of climate change on agricultural drought for upland crops and changes in the temporal trends of drought characteristics. First, the changes in crop evapotranspiration and soil moisture in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were analyzed by applying the soil moisture model from commonly available crop and soil characteristics and climate data, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions.

The Proxy Variables Selection of Vulnerability Assessment for Agricultural Infrastructure According to Climate Change (논문 - 기후변화에 따른 농업생산기반 재해 취약성 평가를 위한 대리변수 선정)

  • Kim, Sung-Jae;Park, Tae-Yang;Kim, Sung-Min;Kim, Sang-Min
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.33-42
    • /
    • 2011
  • Climate change has impacts on not only the average temperature rise but also the intensity and frequency of extreme events such as flood and drought. It is also expected that the damages on agricultural infrastructure will be increased resulting from increased rainfall intensity and frequency caused by climate change. To strengthen the climate change adaptation capacity, it is necessary to identify the vulnerability of a given society's physical infrastructures and to develop appropriate adaptation strategies with infrastructure management because generally facilities related to human settlements are vulnerable to climate changes and establishing an adaptive public infrastructure would reduce the damages and the repair cost. Therefore, development of mitigation strategies for agricultural infrastructure against climatic hazard is very important, but there are few studies on agricultural infrastructure vulnerability assessment and adaptation strategies. The concept of vulnerability, however, is difficult to functionally define due to the fact that vulnerability itself includes many aspects (biological, socioeconomic, etc.) in various sectors. As such, much research on vulnerability has used indicators which are useful for standardization and aggregation. In this study, for the vulnerability assessment for agricultural infrastructure, 3 categories of climate exposure, sensitivity, and adaptation capacity were defined which are composed of 16 sub-categories and 49 proxy variables. Database for each proxy variables was established based on local administrative province. Future studies are required to define the weighting factor and standardization method to calculate the vulnerability indicator for agricultural infrastructure against climate change.

  • PDF

Simulation of Wheat Yield under Changing Climate in Pakistan (파키스탄 기후변화에 따른 밀생산량 모의)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.199-199
    • /
    • 2017
  • Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.

  • PDF

A Review on the Carbon Exchange Estimation in Fruit Orchard (과수 재배지의 탄소 수지 평가 연구 동향)

  • Choi, Eun Jung;Suh, Sang Uk;Jeong, Hyun Cheol;Lee, Jong Sik;Kim, Gun Yeob;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.339-348
    • /
    • 2014
  • Agro-ecosystem plays an important role in the mitigation of atmospheric $CO_2$ concentration through photosynthesis and soil carbon fixation. The perennial crops have capacity of carbon accumulation because they have lived for years in the same position. Carbon dioxide fixation occurs in the fruit orchard by photosynthesis and soil carbon sequestration. The objectives of this review are to introduce the fruit orchard as a carbon dioxide sink and to summarize the methods that measure $CO_2$ flux in the orchard. There are three difference methods (chamber, biomass, and eddy covariance method) to measure $CO_2$ exchanges on sites. However, there is no standard method suitable for fruit cultivation condition in Korea. Thus the standard method have to be developed in order to exactly estimate the carbon accumulation. In foreign studies, the carbon assessments were conducted in apple, peach, olive, grape orchard and so on. On the other hand the estimation of $CO_2$ exchange was carried out for apple and mandarine orchard in Korea. According to these results, fruit orchard is a $CO_2$ sink even though amount of carbon accumulation is smaller than the forest. To introduce certainly fruit orchard as greenhouse gas sink, long-term monitoring and further study have to be conducted under each planting condition.

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

Private sector engagement in large scale solar power deployment in Sri Lanka: Role of green climate fund

  • Liyanage, Namal
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Sri Lanka has strongly understood the importance of mitigation of climate change and various measures have been taken. To tackle the climate change, after ratifying Paris Agreement, Sri Lanka has pledged to reduce her greenhouse gas emission in the energy sector by 20% (16% unconditional and 4% conditional) by 2030 based on the BAU scenario. Simultaneously, the government introduced its new energy policy and strategies in 2019 with a vision of achieving carbon neutrality by 2050. This paper survey related key government documents, policies, reports, and academic articles to investigate opportunities for the private sector to invest large scale solar power deployment (10 MW or above) and to get support from climate finance under article 6 of the Paris Agreement. It has found, growing concern on the environment, energy security issues and increase import expenses for fossil fuels are the main influencing factors to move renewable sources. Further, government investment and FDI both have gradually decreased in the energy sector. Therefore, an alternative financing mechanism is needed. Although the private sector allowed investing in the energy sector since 1996 with the introduction of IPP (Independent Power Producers), it could not make considerable progress on involving large scale solar utility projects. This has revealed government policy is not aligning with the long term generation plan of the electricity sector. The study has also found, it needs more strategic road map, coordination with different institutions, monitoring system to enhance large scale solar contribution.

The Study on the Global Emission Reduction Commitments and Environment Change After Climate Agreement (기후협정후의 배출감소와 환경변화이행에 관한 연구)

  • Kim, Kyung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.319-328
    • /
    • 2014
  • Although most of the debate on global climate change policy has focused on quantity controls due to their political appeal, this paper argues that agreement commitment are more efficient. Scenarios show that to have a likely chance of limiting the increase in global mean temperature to two degrees Celsius, means lowering global greenhouse gas emissions by 40 to 70 percent compared with 2010 by mid-century, and to near-zero by the end of this century. Ambitious mitigation may even require removing carbon dioxide from the atmosphere. This paper emphasizes on global cooperation which is a key for preventing global warming and toward sustainable development, and fair emission reduction targets among countries are significant for achieving emission reductions.

Evaluation of Mitigation Effect of Upo-Swamp on the Air temperature Variation with Nighttime Cooling Rate (야간 냉각율을 이용한 우포늪의 기온변화 완화효과 평가)

  • Park, Myung-Hee;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • In this study, we investigated the effects of Upo-swamp upon local thermal environment with nighttime cooling rate. To do this, we set up the AWS(Automatic Weather observation System) over the central part of Upo-swamp on the early October 2007. We conducted the study by comparing the AWS data with another weather data observed by several meteorological observations of the Korea Meteorological Administration located at the vicinity of Upo-swamp for one year. The air temperature of Upo-swamp was higher than that of the surrounding in cold-climate season. But it was opposite in warm-climate season. We confirmed that Upo-swamp roles to mitigate the daily and annual air temperature ranges. And the daily air temperature variation of Upo-swamp lagged behind the land one. This phenomenon represent that the heat reservoir capacity of Upo-swamp is much larger than that of the ground.