• Title/Summary/Keyword: climate chamber

Search Result 161, Processing Time 0.029 seconds

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Characteristics of GHGs Emissions from Wastewater Treatment Process of Dairy Industry (유제품 가공산업의 폐수처리시설로부터 발생되는 온실가스 배출 특성)

  • Kim, Ji-Hye;Oh, Minhee;Kim, Ji-Hyo;Kang, Seong-Min;Jeong, Jae-Heon;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • In this study, we researched the characteristics of $CH_4$ and $N_2O$ emission of the wastewater treatment (WWT) process in the dairy industry. For flux measurements at the air-water interface, a floating dynamic flow-through chamber was used above the water surface. $CH_4$ and $N_2O$ concentration from the WWT process was measured by NDIR (Non-Dispersive Infrared) Analyser. In the study, $CH_4$ and $N_2O$ fluxes results showed a distinct difference for each WWT process. 60% of the GHG emissions which was the highest percentage were from the equalization tank. Reactor tank was second with 27% of the total emissions from the WWT. Aeration tank was third with 12% of the total emissions. The tendency was that the more the wastewater was treated, the less GHGs were emitted. $CH_4$ and $N_2O$ showed the same tendency. This indicates that the concentrations and properties of wastewater could affect the tendency.

Long-term Climate Change Research Facility for Trees: CO2-Enriched Open Top Chamber System (수목의 장기 기후변화 연구시설: CO2 폭로용 상부 개방형 온실)

  • Lee, Jae-Cheon;Kim, Du-Hyun;Kim, Gil-Nam;Kim, Pan-Gi;Han, Sim-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2012
  • The open-top chamber (OTC) system is designed for long term studies on the climate change impact on the major tree species and their community in Korea. In Korea Forest Research Institute (KFRI), the modified OTC system has been operating since September 2009. The OTC facility consists of six decagon chambers (10 meters in diameter by 7 meters high) with controlled gas concentration. In each chamber, a series of vertical vent pipes are installed to disperse carbon dioxide or normal air into the center of the chamber. The OTC is equipped with remote controlled computer system in order to maintain a stable and elevated concentration of carbon dioxide in the chamber throughout the experimental period. The experiment consisted of 4 treatments: two elevated $CO_2$ levels ($1.4{\times}$ and $1.8{\times}$ ambient $CO_2$) and two controls (inside and outdoors of the OTC). Average operational rate was the lowest (94.2%) in June 2010 but increased to 98% in July 2010 and was 100% during January to December 2011. In 2010~2011, $CO_2$ concentrations inside the OTCs reached the target programmed values, and have been maintained stable in 2011. In 2011, $CO_2$ concentrations of 106%, 100% and 94% of target values has been recorded in control OTC, $1.4{\times}$ $CO_2$-enriched OTC and $1.8{\times}$ $CO_2$-enriched OTC, respectively. With all OTC chambers, the difference between outside and inside temperatures was the highest ($1.2{\sim}2.0^{\circ}C$) at 10 am to 2 pm. Temperature difference between six OTC chambers was not detected. The relative humidity inside and outside the chambers was the same, with minor variations (0~1%). The system required the highest amount of $CO_2$ for operation in June, and consumed 11.33 and 17.04 ton in June 2010 and 2011, respectively.

Effect of Water Management on Greenhouse Gas Emissions from Rice Paddies Using a Slow-release Fertilizer (완효성 비료를 시용한 논에서의 물관리에 따른 온실가스 배출량 평가)

  • Eun-Bin Jang;Hyun-Chul Jeong;Hyo-Suk Gwon;Hyoung-Seok Lee;Hye-Ran Park;Jong-Mun Lee;Taek-Keun Oh;Sun-Il Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.112-120
    • /
    • 2023
  • Methane (CH4) and nitrous oxide (N2O) are significant contributors to greenhouse gas (GHG) emissions from rice fields. Mid-summer drainage is a commonly practiced water management technique that reduces CH4 emissions from rice fields. Slow-release fertilizers gradually release nutrients over an extended period and have been shown to reduce N2O emissions. However, the combined effect of slow-release fertilizer and water management on GHG emissions remains unclear. This study compared GHG emissions from a rice paddy subjected to mid-summer drainage for 10 days (control) with that of a rice paddy subjected to prolonged mid-summer drainage for 20 days combined with slow-release fertilizer (W+S). Gas sampling was conducted weekly using a closed chamber method. During the rice cultivation period, cumulative CH4 and N2O emissions were reduced by 12.3% and 16.2%, respectively, in the W+S treatment compared to the control. Moreover, the W+S treatment exhibited a 1.9% increase in grain yield compared to the control. Under experimental conditions, slow-release fertilizers, in combination with prolonged mid-summer drainage, proved to be the optimal approach for achieving high crop yield while reducing GHG emissions. This represents an effective strategy to mitigate GHG emissions from rice paddy fields.

A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine (디젤엔진 연료계통의 분사특성에 관한 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

Differently expressed genes of soybean by ambient heat stress

  • Jung, Inuk;Kim, Jin Hyeon;Jung, Woosuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.156-156
    • /
    • 2017
  • Plants are grown under constitutive changing of environmental conditions and response to external conditions at both protein and transcription level. The effects of heat on plant growth are broad and influence the yield directly. Heat stresses could be classified depend on intensity and duration. Fundamental changes of growth condition by climate change maybe or maybe not classified as a stress on plant growth. The effects of a short and unanticipated impact of elevated heat on plant could be different with those of under longer extension of ambient heat. To examine differently expressed gene sets by ambient heat stress of soybean, we grow the soybean in normal condition for three weeks. After that, soybean plants move to growth chamber. The temperature of growth chamber increase up to $9^{\circ}C$ for four days. We have extracted mRNA and micro RNA every 24 hours and carried RNA sequence analysis. We found major metabolic pathways affected by ambient heat stress. Mainly carbon metabolism, translation machinery and amino acid synthesis are affected. We discussed the expression patterns of genes of heat sensing and hormone responses.

  • PDF

Development of New Robust Bivoltine Silkworm Hybrid $SR2{\times}SR5$ for Rearing throughout the Year

  • Rao, P. Sudhakara;Nayaka, A. R. Narasimha;Mamatha, M.;Sowmyashree, T. S.;Bashir, Ifat;Ilahi, Irfan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • A Silkworm breeding programme was designed to develop a robust but productive bivoltine silkworm hybrid of Bombyx mori L. suitable for rearing throughout the year in tropical climate by utilizing indigenous polyvoltine and productive bivoltine breeds. The breeding was carried out under high temperature ($36^{\circ}C{\pm}1^{\circ}C$) and low humidity ($50{\pm}5%$) conditions in the environmental chamber. By $F_{12}$, three oval and three dumbbell breeds were isolated with higher survival and productive merits. These breeds were utilized in the hybrid evaluation along with other popular breeds. Based on combining ability test results, the hybrid $SR_2{\times}SR_5$ was selected for large scale testing and evaluated in different seasons. The evaluation studies indicated that the hybrid has higher viability and productive merits and it is suitable to rear throughout the year. The hybrid $SR_2{\times}SR_5$ recorded a survival of 92.0%, cocoon shell weight of 0.417 g, cocoon shell percentage of 23.0 and a filament length of 1042 meters under hot and dry conditions of environmental chamber compared to the control thermo-tolerant hybrid $CSR18{\times}CSR19$.

Sizing Method and Seasonal Performance of Passive Solar Chamber System (자연형 태양 챔버 시스템의 계절별 성능 및 크기 결정 방법)

  • Jang, Hyang-In;Kim, Byung-Gu;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.66-71
    • /
    • 2011
  • This study focused on the application of the Passive Solar Chamber System (PSCS) as proposed by a previous study. The seasonal performance and sizing method for the system were investigated for a feasibility of the PSCS in Korean climate. For seasonal performance, heat and ventilation performances of the PSCS were analyzed for the months of January and August. This study proposed a simple configuration method in which the designer can decide on the system size at the preliminary design stage by using system efficiency, overall heat transfer coefficient transmission, monthly solar radiation, highest and lowest temperatures. During weeks that require heating, the system showed to acquire a daily average heat amount of $860.28Wh/m^2$ day. For cooling periods, the system was computed to supply a daily average natural ventilation of $1,360.2m^3/day$ to the room. Moreover, proposed sizing method and the overall computation results showed a 6.04~7.24% error of assessment.

The Effects of Increased Temperature on Soybean [Glycine max (L.) Merrill] Growth and Seed Yield Responses in Temperature Gradient Chamber (온도구배챔버에서 온도 상승에 따른 콩의 생육과 수량 반응에 미치는 영향)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.159-165
    • /
    • 2018
  • The seed yield of summer plants is affected by climate change due to high temperature. High temperature during the reproductive growth period decrease pod, seed weight in soybean. This study was conducted at National Institute of Crop Science (NICS) during the growing season. The objective of this study was to determine the effect of high temperature on growth and seed yield responses of soybean varieties using a temperature gradient chamber (TGC). In 2017, the Daewonkong (DWK), Pungsannamulkong (PSNK), and Deapungkong (DPK) were grown in three TGCs. Four temperature treatments, Ta (near ambient temperature), Ta+1 (ambient temperature+$1^{\circ}C$), $Ta+2^{\circ}C$ (ambient temperature+$2^{\circ}C$), $Ta+3^{\circ}C$ (ambient temperature+$3^{\circ}C$), $Ta+4^{\circ}C$ (ambient temperature+$4^{\circ}C$), were established by dividing the rows along which the temperature gradient was created. In all three cultivars, beginning bloom (R1) delayed at elevated temperature in $Ta+4^{\circ}C$. In addition, the days to beginning of seed fill and maturity were longer under higher temperature. The numbers of pod, 100 seed weight, and seed yield increased at elevated temperature in DWK. In contrast, seed yield components of PSNK and DPK were reduced in $Ta+4^{\circ}C$. The results suggest that 100 seed weight and seed size of soybean was low by increased temperature in $Ta+4^{\circ}C$ of PSNK and DPK.

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.