DOI QR코드

DOI QR Code

The Effects of Increased Temperature on Soybean [Glycine max (L.) Merrill] Growth and Seed Yield Responses in Temperature Gradient Chamber

온도구배챔버에서 온도 상승에 따른 콩의 생육과 수량 반응에 미치는 영향

  • Lee, Yun-Ho (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Hyeoun-Suk (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jun-Hwan (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wan-Gyu (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Pyong (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jae-Kyeong (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration)
  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조현숙 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 신평 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Received : 2018.03.30
  • Accepted : 2018.06.20
  • Published : 2018.06.30

Abstract

The seed yield of summer plants is affected by climate change due to high temperature. High temperature during the reproductive growth period decrease pod, seed weight in soybean. This study was conducted at National Institute of Crop Science (NICS) during the growing season. The objective of this study was to determine the effect of high temperature on growth and seed yield responses of soybean varieties using a temperature gradient chamber (TGC). In 2017, the Daewonkong (DWK), Pungsannamulkong (PSNK), and Deapungkong (DPK) were grown in three TGCs. Four temperature treatments, Ta (near ambient temperature), Ta+1 (ambient temperature+$1^{\circ}C$), $Ta+2^{\circ}C$ (ambient temperature+$2^{\circ}C$), $Ta+3^{\circ}C$ (ambient temperature+$3^{\circ}C$), $Ta+4^{\circ}C$ (ambient temperature+$4^{\circ}C$), were established by dividing the rows along which the temperature gradient was created. In all three cultivars, beginning bloom (R1) delayed at elevated temperature in $Ta+4^{\circ}C$. In addition, the days to beginning of seed fill and maturity were longer under higher temperature. The numbers of pod, 100 seed weight, and seed yield increased at elevated temperature in DWK. In contrast, seed yield components of PSNK and DPK were reduced in $Ta+4^{\circ}C$. The results suggest that 100 seed weight and seed size of soybean was low by increased temperature in $Ta+4^{\circ}C$ of PSNK and DPK.

본 연구는 급격하게 진행되고 있는 기후변화에 따른 콩의 생육과 종실 수량 반응을 온도구배챔버에서 수행하였다. 생식상 장기간의 고온 발생은 농업 생산성을 저해시키며, 인류의 식품안정성에도 영향을 줄 수 있다. 모든 품종이 $Ta+4^{\circ}C$에서 개화기간이 지연되는 현상을 보여 영양생장기보다 생식생장기의 고온에 대해 민감하게 반응을 하였다. 온도 변화에 대한 종실 수량 구성 반응을 보면 대원콩은 온도가 상승 할수록 협수, 종실 무게가 높아져 수량이 증가하였다. 반면 풍산나물콩과 대풍콩은 각각 $Ta+3^{\circ}C$$Ta+4^{\circ}C$사이에서 각각 일정 온도를 벗어나게 되면 온도에 민감하게 반응하여 착협수와 100립중이 감소를 하여 수량 감소로 이어졌다. 종자 크기로 보았을 때 대립 품종인 대원콩은 일정 온도 범위까지는 수량이 증가 할 것으로 판단된다. 반면 중립과 소립품종인 대풍콩과 풍산 나물콩은 일정 온도를 벗어나게 되면 수량이 감소 할 것으로 판단된다.

Keywords

References

  1. Chebrolu, K. K., F. B. Fritschi, S. Ye, H. B. Krishnan, J. R. Smith, and J. D. Gillman, 2016: Impact of stress during seed development on soybean seed metabolome. Metabolomics 12(2), 128. https://doi.org/10.1007/s11306-016-1074-x
  2. Egli, D., and I. Wardlaw, 1980: Temperature response of seed growth characteristics of soybean. Agronomy Journal 72, 560-564. https://doi.org/10.2134/agronj1980.00021962007200030036x
  3. Ergo, V. V., R. Lascano, C. R. C. Vega, R. Parola, and C. S. Carrera, 2018: Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield. Environmental and Experimental Botany 148, 1-11. https://doi.org/10.1016/j.envexpbot.2017.12.023
  4. Fehr, W. R., and C. E. Caviness, 1977: Stages of soybean development. Iowa State University of Science and Technology Special Report 80.
  5. Ferris, R., T. R. Wheeler, R. H. Eillis, and P. Hadley, 1999: Seed yield after environmental stress in soybean grown under elevated $CO_2$. Crop Science 39, 710-718. https://doi.org/10.2135/cropsci1999.0011183X003900030018x
  6. Gibdon, L. R., and R. E. Mullen, 1996: Influence of day and night temperature on soybean seed yield. Crop Science 36, 98-104. https://doi.org/10.2135/cropsci1996.0011183X003600010018x
  7. Heinemann, A. B., A. H. N. Maia, D. Dourado-neto, K. T. Ingram, and G. Hoogenboom, 2006: Soybean [Glycine max(L.) Merrill] growth and development response to $CO_2$ enrichment under different temperature regimes. European Journal of Agronomy 24, 52-61. https://doi.org/10.1016/j.eja.2005.04.005
  8. Horie, T., H. Nakagawa, J. Nakano, K. Hamotanl, and H. Y. Kim, 1995: Temperature gradient chambers for research on global environment change III A system designed for rice in Kyoto, Japan. Plant Cell Environment 18, 1064-1069. https://doi.org/10.1111/j.1365-3040.1995.tb00618.x
  9. Jiang, H., and D. B. Egli, 1995: Soybean seed number and crop growth rate during flowering. Agronomy Journal 87, 264-267. https://doi.org/10.2134/agronj1995.00021962008700020020x
  10. Kantoli, A. G., G. E. Peralta, and G. A. Slafer, 2013: Seed number responses to extended photoperiod and shading during reproductive stage in indeterminate soybean. European Journal of Agronomy 51, 91-100. https://doi.org/10.1016/j.eja.2013.07.006
  11. Kitano, M., K. Saitoh, and T. Kuroda, 2006: Effects of high temperature on flowering and pod set in soybean. Scientific Reports of the Faculty of Agriculture Okayama University 95, 49-55.
  12. Konno, S., J. Fukui, and M. Ojima, 1964: Influence of soil moisture condition on chemical composition and seed formation of soybean plant. Bullet National Institute of Agricultural Science 11, 111-149.
  13. Kumar, J., R. Kant, S. Kumar, P. S. Basu, A. Sarker, and N. P. Sibgh, 2016: Heat tolerance in lentil under field conditions. Legume Genomics Genet 7, 1-11.
  14. Kumari, S., A. Sehgal, H. HanumanthaRao, R. M. Nair, P. V. V. Prasad, S. Kumar, P. M. Gaur, M. Farooq, K. H. M. Siddique, R. K. Varshney, and H. Nayyar, 2017: Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science 8, 1658. doi: https://doi.org/10.3389/fpls. 2017.01658
  15. Matsuda, H., Y. Shibata, S. Mori, and H. Fujii, 2011: Effect of temperature during the ripening period on the 100-grain weight of soybean in Shonai district of Yamagata prefecture. Japan Journal of Crop Science 80, 43-48. https://doi.org/10.1626/jcs.80.43
  16. Mochizuki, A., T. Shiraiwa, H. Nakagawa, and T. Horie, 2005: The effect of temperature during the reproductive period on development of reproductive organs the occurrence of delayed stem senescence in soybean. Japan Journal of Crop Science 74, 339-343. https://doi.org/10.1626/jcs.74.339
  17. OH-e, I., R. Uwagoh, S. Jyo, T. Kurahashi, K. Saitoh, and T. Kuroda, 2007: Effect of rising temperature on flowering, pod set, dry-matter production and yield in soybean. Japan Journal of Crop Science 76, 433-444. https://doi.org/10.1626/jcs.76.433
  18. Park, K. W., T. H. Ahn, and J. W. Cho, 2010: Effect high temperature during reproductive growth period on soybean growth, nitrogen and cation content. Korean Journal of Crop Science 55, 14-18.
  19. Puteh, A. B., M. ThuZar, M. M. A. Mondal, N. APB. Abdullah, and M. R. A. Halim, 2013: Soybean [Glycine max (L.) Merrill] seed yield response to high temperature stress during reproductive growth stages. Australian Journal of Crop Science 10, 1472-1479.
  20. Rainey, K. M., and P. D. Griffiths, 2005: Differential response of common bean genotypes to high temperature. Journal for the American Society for Horticultural Science 130, 8-23.
  21. Saitoh, K., N. Wakui, T. Mahmood, and T. Kuuroda, 1999: Differentiation and development type of soybean. Plant Production Science 2, 47-50. https://doi.org/10.1626/pps.2.47
  22. Sato, K., and T. Ikeda, 1979: The growth responses of soybean plant to photoperiod and temperature. 5. The effect of temperature during the ripening period on the yield and characters of seeds. Japan Journal of Crop Science 48, 283-290. https://doi.org/10.1626/jcs.48.283
  23. Sage, T. L., S. Agha, V. Lundsgaard-Nielson, H. A. Branch, S. Sultmanis, and R. F. Sage, 2015: The effect of high temperature stress on male and female reproduction in plants. Field Crops Research 182, 30-42. https://doi.org/10.1016/j.fcr.2015.06.011
  24. Tacrindua, C. R. P., T. Shirawa, K. Homma, E. Kumagai, and R. Sameshima, 2012: The response of soybean seed growth characteristics to increase temperature under near-field conditions in temperature gradient chamber. Field Crops Research 131, 26-31. https://doi.org/10.1016/j.fcr.2012.02.006
  25. Tacrindua, C. R. P., T. Shirawa, K. Homma, E. Kumagai, and R. Sameshima, 2013: The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Research 154, 74-81. https://doi.org/10.1016/j.fcr.2013.07.021
  26. Thomas, J. M. G., K. J. Boote, D. PAN, and L. H. Allen, 2010: Elevated temperature delays onset of reproductive growth and reduces seed growth rate of soybean. Journal of Agro Crop Sciences 1, 19-32.
  27. Thuzar, M., A. B. Puteh, N. A. P. Abdullah, MB. M. Lassim, and K. Jusoff, 2010: The effects of temperature stress on the quality and yield soybean [Glycine max (L.) Merrill]. Journal of Agricultural Science 2, 172-179.
  28. Uchikawa, O., Y. Fukushima, and Y. Matusue, 2003: Statistical analysis of soybean yield and meteorological condition in Northern Kyushu. Japan Journal of Crop Science 72, 203-209. https://doi.org/10.1626/jcs.72.203
  29. Wallace, D. H., and W. Yan, 1998: Plant breeding and whole crop systems, improving adaption, maturity, and yield. CAB International, Wallingford, UK.
  30. Yamori, W., K. Noguchi, and I. Terashimal, 2005: Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependence of photosynthetic partial reactions. Plant Cell & Environment 28, 536-547. https://doi.org/10.1111/j.1365-3040.2004.01299.x
  31. Zheng, S. H., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama, 2002: Influences of high night temperature on flowering and pod setting in soybean. Plant Production Science 5, 215-218. https://doi.org/10.1626/pps.5.215