• Title/Summary/Keyword: clean water supply

Search Result 94, Processing Time 0.025 seconds

A Study on the Solar-OTEC Convergence System for Power Generation and Seawater Desalination (발전 및 해수담수화를 위한 태양열-해양온도차 복합 시스템에 대한 연구)

  • Park, Sung-Seek;Kim, Woo-Joong;Kim, Yong-Hwan;Jeon, Yong-Han;Hyun, Chang-Hae;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Ocean thermal energy conversion(OTEC) is a power generation method that utilizes temperature difference between the warm surface seawater and cold deep sea water of ocean. As potential sources of clean-energy supply, Ocean thermal energy conversion(OTEC) power plants' viability has been investigated. Therefore, this paper evaluated the thermodynamic performance of solar-OTEC convergence system for the production with electric power and desalinated water. The comparison analysis of solar-OTEC convergence system performance was carried out as the fluid temperature, saturated temperature difference and pressure of flash evaporator under equivalent conditions. As a results, maximum system efficiency, electric power and fresh water output show at 40, 10, 2.5 kPa of the flash evaporator pressure, respectively. And their respective enhancement ratios were approximately 6.1, 18, 8.6 times higher than that of the base open OTEC system. Also, performance of solar-OTEC system is the highest in the flash evaporator pressure of 10 kPa.

Research on Step-Type Chemical Liquid Deodorizer using Liquid Catalyst

  • WOO, Hyun-Jin;KWON, Lee-Seung;JUNG, Min-Jae;YEO, Og-Gyu;KIM, Young-Do;KWON, Woo-Taeg
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.5
    • /
    • pp.19-25
    • /
    • 2020
  • The purpose of this study was to research and develop a step-type chemical liquid deodorizer including a liquid catalyst that can prevent civil complaints due to odor due to its excellent deodorizing performance. The main composition of chemical liquid deodorizer including liquid catalyst is cleaning deodorization, catalyst deodorization, chemical deodorization, water film plate, deodorization water circulation device, deodorization water injection device, catalyst management system, gas-liquid separation device, chemical supply device, deodorizer control panel, etc. It consists of a device. The air flow of the step-type liquid catalyst chemical liquid deodorizer is a technology that firstly removes basic odor substances, and the liquid catalyst installed in the subsequent process stably removes sulfur compounds, which are acidic odor substances, to discharge clean air. The efficiency of treating the complex odor of the prototype was 98.5% for the first and 99.6% for the second, achieving the target of 95%. The hydrogen sulfide treatment efficiency of the prototype was 100% for the first and 99.9% for the second, which achieved 95%, which was the target of the project. As a result, ammonia was removed by the reaction of ammonia and hydrogen sulfide.

Design Study of Fuel Supply System for 5MW-class Bio Gasturbine by Using Food Waste Water (5MW급 바이오 가스터빈용 전처리시스템 설계연구)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.10-17
    • /
    • 2011
  • Korea is the 11th largest energy consumption country and 96% of its total energy consumption depends on imports from overseas. Therefore it is a very important task to secure renewable energy sources which can reduce both the carbon-dioxide emission and dependency on overseas energy imports. Among the various renewable energy sources, organic wastes are important sources. In Korea, 113 million toe of methane is generated from organic wastes annually, but only 3.7% is effectively used for energy conversion. Thus, it is very important to make better use of organic wastes, especially for power generation. The goals of this project are to develope the fuel supplying system of Bio Gasturbine (GT) for 5MW-class co-generation system. The fuel supplying system mainly consists of $H_2S$ removal system, Bio Gas compression system, Siloxane removal system and moisture separating systems. The fuel requirement of 5MW-class GT is at around 60% of $CH_4$, $H_2S$ (<30 ppm), Siloxane(<10 mg/$nm^3$) and supply pressure (> 25 bar) from biogas compressor. Main mechnical charateristics of Bio Gasturbine system have the specific performance; 1) high speed turbine speed (12,840 rpm) 2) very clean emmission NOx (<50 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for food waste biogas pretreatment system for 5MW-class biogas turbine. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of bioenergy, this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

The Comparative Study on the Characteristics of Thermoacoustic Laser According to Shapes of Resonance Tube (공명 튜브의 기하학적 형상에 따른 열음향 레이저의 특성 비교 연구)

  • Kim, Nam-Jin;An, Eoung-Jin;Oh, Won-Jong;Oh, Seung-Jin;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 2012
  • Among various clean energy technologies, the solar energy technology has been widely used in various fields such as photovoltaic power generation and solar water/space heating. These days, special attention is drawn on its conversion into acoustic energy along with waste heat as a means to promote clean energy utilization. This work was carried out to investigate the possibility of converting solar energy into acoustic waves, especially, its performance characteristics for a single resonance tube (20.2 mm in ID). Variations are made for the stack length and its position as well as power supply. For a resonance tube of 200mm, an average sound pressure of 114.5 dB was measured with a stack length of 25.6mm at 5cm from the closed end. When the power supply was increased to 35W, an average sound pressure of 117.29 dB was detected with a frequency of 500Hz. There was an increase in frequency, 630 Hz (115.7dB), with a shorter resonance tube of 150mm.

How to Change Korean Water Management System? : Focused on Expert's Recognition Analysis (물 관리 행정체계 어떻게 바뀌어야 하는가? : 전문가 인식조사를 중심으로)

  • Kim, Cheol Hoi
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.266-277
    • /
    • 2013
  • Climate change asks the government to make changes in water management system. Although water demand is increasing according to urbanization, clean and safe water supply is limited. Therefore efficient water management is one of the key issues. Korean water management system is evaluated inefficient because it is executed by five different ministries. This study reviewed previous literature about Korean water management system, analysed present function sharing among 5 ministries, and conducted survey on improvement of water management system. Experts recognized that the most important problem of water policy is the failure of policy coordination among Ministries, and the solution of it is to make a new integral organization or to integrate related functions into one Ministry. Based on them, this study conclude that the central government functions related with water management need to be integrated on a new organization or Ministry of Environment focused on water quality improvement in the light of preservation instead of development.

Removal of Nitrate in River Water by Microorganisms in Saturated-Zone Soil: Laboratory-Scale Column Test (포화층 토양미생물에 의한 하천수의 nitrate 제거: 실험실규모 컬럼 실험)

  • Park, Jungyong;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.543-548
    • /
    • 2014
  • Aquifer recharge and recovery is a technology used to ensure a stable supply of clean water. During the process, river water is injected into a soil aquifer and stored. The stored water is then recovered and used to produce drinking water. It is important to understand quality improvement of the injected water while it is stored in the aquifer. In the present study, a lab-scale column reactor containing saturated-zone soil was employed to mimic an aquifer. The reactor was used to investigate microbial removal of nitrate that is a major inorganic contaminant detected in the Nakdong River. The reactor was introduced with river water that contained nitrate at concentrations (5.07, 6.81, 8.27, and 11.07 mg $NO_3{^-}/l$) detected downstream of the Nakdong River in the past 2 years. The nitrate concentrations decreased during the introduced water is retained in the reactor. Effluent from the reactor contained 1.49 mg $NO_3{^-}/l$ or less and had an average pH of 7.98 regardless of the nitrate concentrations of the influent. However abiotic control reactor showed similar nitrate-concentrations in its influent and effluent. Considering the result of abiotic control, the decreased nitrate concentration observed in the test column suggested that microorganisms in saturated-zone soil removed nitrate in the river water introduced into the reactor. Results of this study will be used to better understand microbial improvement of water quality in aquifer recharge and recovery technology.

Parameter Estimation of the Aerated Wetland for the Performance of the Polluted Stream Treatment (오염하천 정화를 위한 호기성 인공습지의 운영인자 평가)

  • Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.302-310
    • /
    • 2019
  • A constructed wetland with the aerobic tank and anaerobic/anoxic tank connected in series was employed in order to treat highly polluted stream water. The aerobic tank was maintained aerobic with a continuous supply of air through the natural air draft system. Five pilot plants having different residence times were employed together to obtain parameters for the best performances of the wetland. BOD and COD removals at the aerobic tank followed the first order kinetics. COD removal rate constants were slightly lower than BOD. The temperature dependence of COD (θ = 1.0079) and BOD (θ = 1.0083) was almost the same, but the temperature dependence (θN) of T-N removal was 1.0189. The SS removal rate was as high as 98% and the removal efficiency showed a tendency to increase with increasing hydraulic loading rate (Q/A). The main mechanism of BOD and COD removal at the anaerobic/anoxic tank was entirely different from that of the aerobic tank. BOD and COD were supplied as the carbon source for biological denitrification. T-P was believed to be removed though the cation exchange between orthophosphate and gravels within the anaerobic and anoxic tanks. The wetland could successfully be operated without being blocked by the filtered solid which subsequently decomposed at an extremely fast rate.

A Study on the Performance of Ni Catalysts in Biogas Steam Reforming: Impact of Supports and Precipitation Agent Injection Rates (바이오가스 수증기 개질 반응용 Ni 촉매 성능 연구: 지지체 및 침전제 주입 속도에 따른 영향)

  • Ji-Hyeon Gong;Min-Ju Kim;Kyung-Won Jeon;Won-Jun Jang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.327-332
    • /
    • 2023
  • This study investigated synthesis gas production via steam reforming of biogas. Ni-Al2O3 and Ni-CeO2 catalysts were synthesized using the co-precipitation method, with controlled precipitation agent injection rates. Catalytic performances were tested at various temperatures, with a gas composition ratio of CH4:CO2:H2O = 1:0.67:3 and a gas hourly space velocity (GHSV) of 647,000 mL h-1 gcat-1. The rate of precipitation agent injection influenced the characteristics of the catalysts depending on the type of support used. As the temperature increased, both the CO2 reforming of methane and the reverse water gas shift reactions occurred. The Ni-Al2O3 catalyst, synthesized with a single injection of the precipitation agent, exhibited the best catalytic activity under conditions with sufficient steam supply among the prepared catalysts, due to its high Ni dispersion.

A Study on the Integrated Fusion Technology Between a Carbon Dioxide Emission and a District Cooling Energy Using a Cold Energy ($CO_2$ 배출문제와 냉열이용 지역집단 냉방에너지에 관한 통합적 융합기술 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.34-40
    • /
    • 2006
  • This paper provides a fusion technology between a district cooling energy system and an environment conservation policy based on the energy savings and reusable cold energy resources. The district heating and cooling systems are very effective ways for an energy saving, a cost reduction and a safety control. It is necessary to equalize the energy savings and an environmental preservation policy for an improved human lift. A gasification process of a liquefied natural gas, cooling water from deep seawater and an ice water thermal storage system may produce a cold energy. A district cooling system is used to cool an apartment, office buildings and factory facilities with a cooling energy supply pipeline. LNG cooling energy will switch a conventional air-conditioning system, which is operated by on electrical energy and a Freon refrigerant. Coincident with significant clean energy and operating cost savings, LNG cold energy system owen radical reductions in an air-borne pollutant, $CO_2$ and the release of environmentally harmful refrigerants compared with that of the conventional air-conditioning system. This study provides useful information on the fusion technology of a LNG cold energy usage and energy savings, and environmental conservation.

  • PDF

Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation

  • Soon Hyung Kang;Jun-Seok Ha
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is a vital source of clean and sustainable hydrogen energy. Moreover, the large-scale H2 production is currently necessary, while long-term stability and high PEC activity still remain important issues. In this study, a GaN-based photoelectrode was modified by an additional NH3 treatment (900℃ for 10 min) and its PEC behavior was monitored. The bare GaN exhibited a highly crystalline wurtzite structure with the (002) plane and the optical bandgap was approximately 3.2 eV. In comparison, the NH3-treated GaN film exhibited slightly reduced crystallinity and a small improvement in light absorption, resulting from the lattice stress or cracks induced by the excessive N supply. The minor surface nanotexturing created more surface area, providing electroactive reacting sites. From the surface XPS analysis, the formation of an N-Ga-O phase on the surface region of the GaN film was confirmed, which suppressed the charge recombination process and the positive shift of EFB. Therefore, these effects boosted the PEC activity of the NH3-treated GaN film, with J values of approximately 0.35 and 0.78 mA·cm-2 at 0.0 and 1.23 VRHE, respectively, and an onset potential (Von) of -0.24 VRHE. In addition, there was an approximate 50% improvement in the J value within the highly applied potential region with a positive shift of Von. This result could be explained by the increased nanotexturing on the surface structure, the newly formed defect/trap states correlated to the positive Von shift, and the formation of a GaOxN1-x phase, which partially blocked the charge recombination reaction.