DOI QR코드

DOI QR Code

Parameter Estimation of the Aerated Wetland for the Performance of the Polluted Stream Treatment

오염하천 정화를 위한 호기성 인공습지의 운영인자 평가

  • Kim, Dul-Sun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Lee, Dong-Keun (Department of Chemical Engineering, Gyeongsang National University)
  • Received : 2019.09.25
  • Accepted : 2019.10.30
  • Published : 2019.12.31

Abstract

A constructed wetland with the aerobic tank and anaerobic/anoxic tank connected in series was employed in order to treat highly polluted stream water. The aerobic tank was maintained aerobic with a continuous supply of air through the natural air draft system. Five pilot plants having different residence times were employed together to obtain parameters for the best performances of the wetland. BOD and COD removals at the aerobic tank followed the first order kinetics. COD removal rate constants were slightly lower than BOD. The temperature dependence of COD (θ = 1.0079) and BOD (θ = 1.0083) was almost the same, but the temperature dependence (θN) of T-N removal was 1.0189. The SS removal rate was as high as 98% and the removal efficiency showed a tendency to increase with increasing hydraulic loading rate (Q/A). The main mechanism of BOD and COD removal at the anaerobic/anoxic tank was entirely different from that of the aerobic tank. BOD and COD were supplied as the carbon source for biological denitrification. T-P was believed to be removed though the cation exchange between orthophosphate and gravels within the anaerobic and anoxic tanks. The wetland could successfully be operated without being blocked by the filtered solid which subsequently decomposed at an extremely fast rate.

호기조와 혐기/무산소조를 직렬로 연결한 인공습지를 이용하여 크게 오염된 하천수를 처리하였다. 호기조는 자연 공기 배출 시스템을 통하여 공기가 연속적으로 공급되어 호기성 상태가 유지되었다. 인공습지의 성능에 영향을 미치는 최적의 영향인자를 조사하기 위하여 체류시간을 다르게 한 5개의 파일럿 플랜트를 사용하였다. 호기조에서 BOD (biochemical oxygen demand)와 COD (chemical oxygen demand)의 제거율은 1차 반응 속도식을 나타내었고, COD 제거 속도 상수는 BOD보다 약간 낮았다. 온도 의존성은 COD (θ = 1.0079)와 BOD (θ = 1.0083)제거에 대한 값이 거의 동일했으나 T-N 제거의 온도 의존성(θN)은 1.0189로 다소 높게 나타났다. SS제거율은 98%로 높았고 수력학적 부하 속도(Q/A)가 증가함에 따라 제거 효율이 증가하는 경향을 보였다. 혐기/무산소조에서 BOD와 COD 제거의 주요 메커니즘은 호기조와 완전히 다르게 나타났다. 혐기/무산소조에서 COD와 COD는 생물학적 탈질을 위한 탄소원으로 공급되었고 T-P는 혐기/무산소조 내의 orthophosphate와 자갈 사이의 양이온 교환에 의해 제거되는 것으로 조사되었다. 인공습지는 여과된 고형물에 의해 막힘 없이 성공적으로 운영되었고 고형물들은 매우 빠르게 연속적으로 분해되었다.

Keywords

References

  1. Seidel, K., "Zur problematik der keim-und pflanzengewasser," Verh. Internat. Verein Limnol., 14, 1035-1039 (1961).
  2. Reed, S. C., Crites, R. W., and Middlebrooks, E. J., "Natural Systems for Waste Management and Treatment," McGraw-Hill, New York, (1988).
  3. Crites, R., and Tchbanoglous, G., "Small and Decentralized Management Systems," McGraw-Hill, New York, (1998).
  4. Leonard, K. M., and Swanson, G. W., "Comparison of Operational Design Criteria for Subsurface Flow Constructed Wetlands for Wastewater Treatment," Water Sci. Technol., 43(11), 301-308 (2001). https://doi.org/10.2166/wst.2001.0695
  5. Kim, D.-S., Yoon, J.-H., Kim, S.-C., and Lee, D.-K., "Biological Filtration of Organic Solid Materials from Municipal Wastewater with the Aerated Constructed Wetland," Recent Progress in Slow Sand and Alternative Biofiltration Processes, 63, 500-505 (2006).
  6. Kim, S.-C., and Lee, D.-K., "Design of an Aerated Wetland for the Treatment of Municipal Wastewater," Stud. Surf. Sci. Catal., 159, 145-148 (2006). https://doi.org/10.1016/S0167-2991(06)81554-5
  7. Lee, D.-K., Kim, S.-C., and Yoon, J.-H., "Reuse of a Dyehouse Effluent after being Treated with the Combined Catalytic Wet Peroxide Oxidation Process and the Aerated Constructed Wetland," Water Sci. Technol., 55(1-2), 407-415 (2007). https://doi.org/10.2166/wst.2007.041
  8. Vymazal, J., "Constructed Wetland for Wastewater Treatment," Water, 2, 530-549 (2010). https://doi.org/10.3390/w2030530
  9. Vymazal, J., "Constructed Wetland for Wastewater Treatment: Five Decades of Experience," Environ. Sci. Technol., 45, 61-65 (2011). https://doi.org/10.1021/es101403q
  10. Usheimo, S., Huotari, J., Tulonen, T., Aalto, S. L., Rissanen, A. J., and Arvola, L., "High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate," Environ. Sci. Technol., 52, 13343-13350 (2018). https://doi.org/10.1021/acs.est.8b03032
  11. Cui, L., Ouyang, Y., Gu, W., Yang, W., and Xu, Q., "Evaluation of Nutrient Removal Efficiency and Microbial Enzyme Activity in a Baffled Subsurface-Flow Constructed Wetland System," Bioresour. Technol., 146, 656-662 (2013). https://doi.org/10.1016/j.biortech.2013.07.105
  12. Meng, P., Pei, H., Hu, W., Shao, Y., and Li, Z., "How to Increase Microbial Degradation in Constructed Wetlands: Influencing Factors and Improvement Measures," Bioresour. Technol., 157, 316-326 (2014). https://doi.org/10.1016/j.biortech.2014.01.095
  13. Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., and Liu, H., "A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment: Design and Operation," Bioresour. Technol., 175, 594-601 (2015b). https://doi.org/10.1016/j.biortech.2014.10.068
  14. Ong, S.-A., Uchiyama, K., Inadama, D., Ishida, Y., and Yamagiwa, K., "Treatment of azo Dye Acid Orange 7 Containing Wastewater using Up-Flow Constructed Wetland with and without Supplementary Aeration," Bioresour. Technol., 101(23), 9049-9057 (2010). https://doi.org/10.1016/j.biortech.2010.07.034
  15. Pan, J., Fei, H., Song, S., Yuan, F., and Yu, L., "Effects of Intermittent Aeration on Pollutants Removal in Subsurface Wastewater Infiltration System," Bioresour. Technol., 191, 327-331 (2015). https://doi.org/10.1016/j.biortech.2015.05.023
  16. Hu, Y., Zhao, Y., Zhao, X., and Kumar, J. L., "High Rate Nitrogen Removal in an Alum Sludge-Based Intermittent Aeration Constructed Wetland," Environ. Sci. Technol., 46(8), 4583-4590 (2012). https://doi.org/10.1021/es204105h
  17. Matamoros, V., García, J., and Bayona, J. M., "Organic Micropollutant Removal in a Full-Scale Surface Flow Constructed Wetland Fed with Secondary Effluent," Water Res., 42(3), 653-660 (2008). https://doi.org/10.1016/j.watres.2007.08.016
  18. Oon, Y. -L., Ong, S. -A., Ho, L. -N., Wong, Y. -S., Oon, Y. -S., Lehl, H. K., and Thung, W. -E., "Hybrid System Up-Flow Constructed Wetland Integrated with Microbial Fuel Cell for Simultaneous Wastewater Treatment and Electricity Generation," Bioresour. Technol., 186, 270-275 (2015). https://doi.org/10.1016/j.biortech.2015.03.014
  19. Li, F., Lu, L., Zheng, X., Ngo, H. H., Liang, S., Guo, W., and Zhang, X., "Enhanced Nitrogen Removal in Constructed Wetlands: Effects of Dissolved Oxygen and Step-Feeding," Bioresour. Technol., 169, 395-402 (2014). https://doi.org/10.1016/j.biortech.2014.07.004
  20. Jia, W., Zhang, J., Wu, J., Xie, H., and Zhang, B., "Effect of Intermittent Operation on Contaminant Removal and Plant Growth in Vertical Flow Constructed Wetlands: a Microcosm Experiment," Desalination, 262(1), 202-208 (2010). https://doi.org/10.1016/j.desal.2010.06.012
  21. Ong, S. -A., Uchiyama, K., Inadama, D., Ishida, Y., and Yamagiwa, K., "Treatment of azo Dye Acid Orange 7 Containing Wastewater using Up-Flow Constructed Wetland with and without Supplementary Aeration," Bioresour. Technol., 101(23), 9049-9057 (2010). https://doi.org/10.1016/j.biortech.2010.07.034
  22. Wang, X., Tian, Y., Zhao, X., Peng, S., Wu, Q., and Yan, L., "Effects of Aeration Position on Organics, Nitrogen and Phosphorus Removal in Combined Oxidation Pond-Constructed Wetland Wystems," Bioresour. Technol., 198, 7-15 (2015). https://doi.org/10.1016/j.biortech.2015.08.150
  23. Jia, W., Zhang, J., Li, P., Xie, H., Wu, J., and Wang, J., "Nitrous Oxide Emissions from Surface Flow and Subsurface Flow Constructed Wetland Microcosms: Effect of Feeding Strategies," Ecol. Eng., 37(11), 1815-1821 (2011). https://doi.org/10.1016/j.ecoleng.2011.06.019
  24. Liu, H., Hu, Z., Zhang, J., Ngo, H. H., Guo W., Liang, S., Fan, J., Lu, S., and Wu, H., "Optimizations on Supply and Distribution of Dissolved Oxygen in Constructed Wetlands: A Review" Bioresour. Technol., 214, 797-805 (2016). https://doi.org/10.1016/j.biortech.2016.05.003
  25. Schroeder, E. D., and Tchbanoglous, G., "Mass Transfer Limitations in Trickling Filter Designs," J. Water Pollut. Control Fed., 48, 771-775 (1976).