DOI QR코드

DOI QR Code

A Study on the Performance of Ni Catalysts in Biogas Steam Reforming: Impact of Supports and Precipitation Agent Injection Rates

바이오가스 수증기 개질 반응용 Ni 촉매 성능 연구: 지지체 및 침전제 주입 속도에 따른 영향

  • Ji-Hyeon Gong (Department of Environmental Engineering, Ajou University) ;
  • Min-Ju Kim (Department of Environmental Engineering, Ajou University) ;
  • Kyung-Won Jeon (Department of Environmental and Safety Engineering, Ajou University) ;
  • Won-Jun Jang (Department of Environmental Engineering, Ajou University)
  • 공지현 (아주대학교 환경공학과) ;
  • 김민주 (아주대학교 환경공학과) ;
  • 전경원 (아주대학교 환경안전공학과) ;
  • 장원준 (아주대학교 환경공학과)
  • Received : 2023.12.13
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

This study investigated synthesis gas production via steam reforming of biogas. Ni-Al2O3 and Ni-CeO2 catalysts were synthesized using the co-precipitation method, with controlled precipitation agent injection rates. Catalytic performances were tested at various temperatures, with a gas composition ratio of CH4:CO2:H2O = 1:0.67:3 and a gas hourly space velocity (GHSV) of 647,000 mL h-1 gcat-1. The rate of precipitation agent injection influenced the characteristics of the catalysts depending on the type of support used. As the temperature increased, both the CO2 reforming of methane and the reverse water gas shift reactions occurred. The Ni-Al2O3 catalyst, synthesized with a single injection of the precipitation agent, exhibited the best catalytic activity under conditions with sufficient steam supply among the prepared catalysts, due to its high Ni dispersion.

본 연구에서는 바이오가스 수증기 개질을 통한 합성가스 생산에 관해 연구했다. Ni-Al2O3 및 Ni-CeO2 촉매는 공침법으로 제조되었으며 침전제 주입 속도가 조절되었다. 온도에 따른 촉매 성능 테스트는 CH4:CO2:H2O = 1:0.67:3의 가스 조성비와 647,000 mL h-1 gcat-1의 공간속도에서 진행하였다. 침전제 주입 속도는 촉매 특성에 영향을 미쳤으며, 지지체 종류에 따라 결과를 보였다. 온도가 증가함에 따라 이산화탄소 개질 반응과 reverse water gas shift 반응이 일어났다. 수증기가 충분히 공급되는 조건에서는 침전제를 한 번에 투입하여 제조된 Ni-Al2O3 촉매가 높은 Ni 분산도에 기인하여 가장 우수한 성능을 보였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2021R1I1A3048595).

References

  1. Climate central, "The Hottest 12-month Stretch in Recorded History," 1-15 (2023).
  2. Ajay, C. M., Mohan, S., Dinesha, P., and Rosen, M. A., "Review of Impact of Nanoparticle Additives on Anaerobic Digestion and Methane Generation," Fuel, 277, 118234 (2020).
  3. An, J., Kim, H. J., and Chun, Y. N., "Development of a Cavity Matrix Combustor for applying Biogas," J. Korea Soc. Waste Manag., 38(5), 426-433 (2021). https://doi.org/10.9786/kswm.2021.38.5.426
  4. Hwang, I.-J., Jeon, J.-R., Kim, J., and Kim, S.-S., "Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties," Clean Technol., 29(3), 200-216 (2023).
  5. Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., and Aghbashlo, M., "Biogas Production from Food Wastes: A Review on Recent Developments and Future Perspectives." Bioresour. Technol. Rep., 7, 100202 (2019).
  6. Son, D., Seo, K., Kim, Y., Lee, J., and Jung, S. P., "Organic Waste Resource Gasification: Current Status and Perspectives," J. Korean Soc. Environ. Eng., 45(2), 96-106 (2023).
  7. Ju, Y., Ryu, D., Kim, D.-Y., and Kim, D., "Characteristics of Drying of Agricultural by-products as Unused Biomass for Renewable Energy," J. Korea Soc. Waste Manag., 40(3), 292-300 (2023). https://doi.org/10.9786/kswm.2023.40.3.292
  8. Park, M.-J., Kim, H.-M., Gu, Y.-J., and Jeong, D.-W., "Optimization of Bbiogas-reforming Conditions Considering Carbon Formation, Hydrogen Production, and Energy Efficiencies," Energy, 265, 126273 (2023).
  9. Zhao, X., Joseph, B., Kuhn, J., and Ozcan, S., "Biogas Reforming to Syngas: A Review," IScience, 23, 101082 (2020).
  10. Kim, J.-E., Jeon, K.-W., Yoon, C.-H., and Jang, W.-J., "A Study of Thermodynamic Equilibrium Analysis and Optimized Reaction Conditions for Combined Steam Reforming of Biogas," J. Korea Soc. Waste Manag., 37(8), 521-530 (2020). https://doi.org/10.9786/kswm.2020.37.8.521
  11. Avraam, D. G., Halkides, T. I., Liguras, D. K., Bereketidou, O. A., and Goula, M. A., "An Experimental and Theoretical Approach for the Biogas Steam Reforming Reaction," Int. J. Hydrogen Energy, 35(18), 9818-9827 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.106
  12. Jang, W.-J., Hong, Y.-J., Kim, H.-M, Shim, J.-O., Roh, H.-S., and Kang, Y.-C., "Alkali Resistant Ni-loaded Yolk-shell Catalysts for Direct Internal Reforming in Molten Carbonate Fuel Cells," J. Power Sources, 352, 1-8 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.117
  13. Haider, S. K., Pawar, A. U., Lee, D. K., and Kang, Y. S., "Significance of Ionic Character Induced by Ga-Doped γ-Al2O3 on Polyethylene Degradation to the Precursors of Gasoline and Diesel Oil with a Trace Amount of Wax," Nanomaterials, 12, 3122 (2022).
  14. Jeon, K.-W., Kim, H.-M., Kim, B.-J., Lee, Y.-L., Na, H.-S., Shim, J.-O., Jang, W.-J., and Roh, H.-S., "Synthesis Gas Production from Carbon Dioxide Reforming of Methane over Ni-MgO Catalyst: Combined Effects of Titration Rate during Co-precipitation and CeO2 Addition," Fuel Process. Technol., 219, 106377 (2021).
  15. Jeong, D.-W., Jang, W.-J., Shim, J.-O., Han, W.-B., Roh, H.-S., Jung, U. H., and Yoon, W. L., "Low-temperature Wwater-gas Shift Reaction over Supported Cu Catalysts," Renew. Energy, 65, 102-107 (2014).
  16. Roh, H.-S., "Carbon Dioxide Reforming of Methane over Ni Catalysts Supported on Al2O3 Modified with La2O3, MgO, and CaO," Catal. Surv. Asia, 12, 239-252 (2008).
  17. Jang, W.-J., Jeong, D.-W., Shim, J.-O., Roh, H.-S., Son, H. S., and Lee, S. J., "H2 and CO Production over a Stable Ni-MgO-Ce0.8Zr0.2O2 Catalyst from CO2 Reforming of CH4," Int. J. Hydrogen Energy, 38, 4508-4512 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.196
  18. Marinho, A. L. A., Toniolo, F. S., Noronha, F. B., Epron, F., Duprez, D., and Bion, N., "Highly Active and Stable Ni Dispersed on Mesoporous CeO2-Al2O3 Catalysts for Production of Syngas by Dry Reforming of Methane," Appl. Catal. B-Environ., 281, 119459 (2021).
  19. Jiang, P., Zhao, J., Han, Y., Wang, X., Pei, Y., Zhang, Z., Liu, Y., and Ren, J., "Highly Active and Dispersed Ni/Al2O3 Catalysts for CO Methanation Prepared by the Cation-Anion Double-Hydrolysis Method: Effectsof Zr, Fe, and Ce Promoters," Ind. Eng. Chem. Res., 58, 11728-11738 (2019).
  20. Lee, D. H., Seo, H. M., Song, Y. H., and Lee, J., "Research Trends of Ni-based Catalysts on Steam Reforming of Bio-oils for H2 Production: A Review," Clean Technol., 29(3), 163-171 (2023).