While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.
채소류 및 과일류 중 PAHs 분석방법을 확립하고 오염실태 파악을 위하여 서울, 춘천, 대전, 광주, 부산의 5대 도시 시장에서 채소류 13종, 과일류 5종 총 210건을 채취하였다. 균질화된 시료를 dichloromethane으로 초음파추출하고 탈수한 후 Sep-Pak Florisil Cartridge로 정제하여 HPLC/FLD로 동시 정량 분석하였다. 시료에 표준물질을 spike하여 전처리 후 기기분석한 결과, 각각의 PAH에 대한 회수율은 약 95~102%였으며, 검출한계는 PAH에 따라 차이는 있으나 0.002~0.5 ng/g 수준이었다. 채소류 및 과일류 중 8가지 총 PAHs의 평균 함량은 0.19 ng/g이었으며 개별 평균 PAH 함량은 benzo(a)anthracene 불검출, chrysene 0.014 ng/g, benzo(b)fluoranthene 0.031 ng/g, benzo(k)fluoranthene 0.016 ng/g, benzo(a)pyrene 0.019 ng/g, dibenzo(a,h)anthracene 0.091 ng/g, benzo(g,h,i)perylene 0.016 ng/g, indeno(1,2,3-c,d)pyrene 불검출 수준이었다.
소변 중 대마 남용여부를 판별하는데 기준이 되는 tetrahydrocannabinol (THC)의 대사체 성분인 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THCCOOH)를 고체상 추출법 (solid-phase extraction, SPE)과 가스크로마토그래피/질량분석법 (GC/MS)을 이용하여 신속하게 분석 할 수 있는 방법을 제시하였다. 본 실험은 시험관에 소변 3 mL를 취해 염기성 (pH 10) 조건에서 가수분해 한 후, 양이온교환 카트리지를 사용하여 THCCOOH 성분을 선택적으로 추출하고, 증발 건고한 다음 유도체 반응을 시켜 GC/MS로 분석하였다. 그 결과 분석방법의 검출한계 (LOD)는 0.4 ng/mL이고, 정량한계 (LOQ)는 1.2 ng/mL이였다. 검정곡선의 직선성 상관계수 ($r^2$)는 1.2 (LLE는 1.3)~50.0 ng/mL의 농도범위에서 0.999를 나타내었다. 그리고 정밀도 (precision)와 정확도 (accuracy)는 모두 ${\pm}1.20%$ 이내로 안정적이었으며, 회수율(recovery)은 83.6~90.7%로 측정되었다. 액체상 추출법 (liquid-liquid extraction, LLE)과 비교할 때, SPE 방법이 회수율은 낮았지만 검출한계, 정량한계, 정밀도 및 정확도에서는 큰 차이가 없었다. 그러나 LLE 방법은 추출과정에 시간과 노력이 많이 드는 반면, SPE 방법은 상대적으로 추출 조작이 간편하고 신속하게 추출되었으며, 추출 잔류물도 깨끗하였다. SPE를 이용한 추출방법을 다수의 대마 흡연자 소변에 적용하였을 때 기존에 사용하던 LLE 방법보다 간편하고, 신속하게 대마 대사체 분석이 가능하였다.
의약물질(PPCPs)은 수질 환경 시료에서 새로운 오염물질로 대두되고 있다. 본 연구에서는 LC/ESI-MS/MS를 이용하여 환경 수질 시료로부터 7 종(2-퀴노사린카르복시산, 아세틸살리실산, 디클로페낙-소듐, 나프록센, 이부프로펜, 메페남산, 탈니플루메이트)의 산성의약물질을 동시 분석하는 방법을 비교하여 개선하였으며 폐수처리장의 유입수 및 방류수 그리고 연장선상의 하천수의 오염도를 측정하였다. LC/ESI-MS/MS 분석을 위해서 MCX (Mixed Cation eXchange) 카트리지와 HLB (Hydrophilic-Lipophilic Balance) 카트리지를 연결하는 텐뎀 고체상 추출법과 MCX 카트리지만을 사용하는 고체상 추출법을 이용하여 효과적인 시료 정제 및 추출을 수행하였다. 검출한계(LODs)와 방법검출한계(MDLs)는 각각 0.05~1.50 pg/mL, 0.17~4.90 pg/mL 범위를나타내었다. 시료중 1.0 ng/mL 농도(n=3)에서절대회수율은 81.9%~116.3%를 나타내었다. 수질 환경 시료에서 수 pg/mL~ng/mL의 농도로 산성의약물질이 측정되었다.
본 연구는 제지공정에서 발생하는 슬러지의 소성온도에 따른 열분해 특성을 파악하기 위하여 실시되었다. 제지슬러지의 수분, 가연분 및 회분 함량은 각각 70.72%, 9.52%, 19.76%로 나타났다. 제지슬러지에는 $Fe_2O_3$가 66.40%로 가장 많이 함유되어 있었으며, CaO(15.80%), $Al_2O_3$(9.42%), $SO_3$(3.75%)와 그 밖에 $SiO_2$, $Na_2O$, $Cr_2O_3$ 등도 미량 함유되어 있었다. 소성 전 보다 소성 후 그리고 소성온도가 증가함에 따라 $Fe_2O_3$ 와 $Cr_2O_3$를 제외한 다른 원소들의 상대적 함유량은 약간씩 감소하였다. 소성 전 제지슬러지의 비표 면적은 $130m^2/g$이었으며, $400^{\circ}C$와 $700^{\circ}C$에서 소성한 슬러지의 비표면적은 각각 $114m^2/g$와 $33m^2/g$으로 소성온도가 높아짐에 따라서 비표면적 값이 감소하였다. 열중량 분석 결과 $600^{\circ}C$까지는 결합수와 유기물 분해에 의한 중량 감소가 나타났으며, $800^{\circ}C$ 이후에는 금속들의 휘발 및 미연탄소분 연소에 의한 중량감소가 나타났다.
석탄가스화 기술은 온실가스 배출이 많은 석탄을 사용하지만 이산화탄소 포집에 유리한 장점이 있어서 차세대 석탄활용 기술로 주목받고 있다. 석탄 또는 펫코크 슬러리를 이용하는 습식 가스화 기술은 건식 기술에 비하여 효율이 낮지만 낮은 건설비와 슬러리 공급 유연성 등의 장점으로 인하여 현재는 물론 미래에도 여전히 매력적인 기술로 인식될 것으로 판단된다. 본 연구에서는 역청탄을 슬러리화한 시료를 사용하고, 기존의 건식 석탄가스화기에 석탄슬러리 공급장치와 슬러리 공급 버너를 연계하여 가스화 실험을 수행하였다. 기존의 분류층 가스화기의 운전온도보다는 비교적 낮은 온도에서 운전을 수행하여 일부의 회재만이 슬랙으로 전환되고 나머지는 비산재로 배출되는 부분 용융형 가스화 운전을 수행하였다. 운전 종료 후 슬랙과 비산재를 포집하여 탄소전환율을 계산하였고, 탄소 질량 정산 방법을 적용하여 가스화 운전 성능을 나타내는 가장 중요한 지표인 냉가스효율을 계산하였다. 탄소전환율과 냉가스효율은 약 98.5% 및 60.4% 수준으로서 파일롯급 플랜트에서의 실험 결과임을 고려하면 비교적 높은 값을 나타내었다. 또한 실험 결과와 화학적 평형상태 계산 결과를 서로 비교하고 에너지 정산을 통하여 실험 결과의 건전성을 확인하였다.
산업화는 도로축적퇴적물(road-deposited sediment, RDS)의 발생과 중금속 오염을 증가시켰고, 이는 비점오염을 통해 주변 수환경에 심각한 영향을 끼칠 수 있다. RDS의 오염과 입자 크기와의 관계는 오염관리를 위해 중요하나, 이에 대한 정보는 매우 부족하다. 본 연구에서는 시화호 및 주변 하천의 주요한 비점오염원으로 판단되는 시화산업단지 내 25개 정점에서 수거된 RDS 시료의 입도에 따른 중금속 분포특성과 환경영향에 대한 연구를 수행하였다. 농집지수(Igeo)는 RDS가 주로 Zn, Cu, Pb, Sb에 의해 오염되었음을 보여주었고, 이들의 농도범위는 Zn, Cu, Pb, Sb이 각각 633-3605, 130-1483, 120-1997, 5.5-50 mg/kg이었다. 이는 국내외 다른 도시에 비해 매우 높은 수준이었다. 대부분의 중금속은 농도와 입도와의 높은 음의 상관관계를 보였다. 250 ㎛ 이하의 분율은 전체에 대한 질량 부하와, 오염 기여율이 각각 평균 78.6, 70.4%로 매우 지배적이었다. 강우 유출을 통해 인근 하천으로 유입될 확률이 높을 것으로 간주되는 125 ㎛ 이하의 입자 분율에 대한 오염평가 결과, 이는 저서생물에 독성을 나타낼 수 있는 매우 오염된 수준이었다. 입자 크기별로 나누어 RDS의 금속원소에 대한 주성분 및 요인분석을 실시한 결과, 250 ㎛ 보다 큰 RDS는 주변의 산업시설이, 250 ㎛ 보다 작은 RDS는 차량운행이 중금속오염의 주요 요인일 것으로 나타났다. 본 연구 결과, 시화산업단지 내 RDS의 중금속오염 및 인근 수역으로의 비점오염의 효율적인 저감을 위해서는 125에서 250 ㎛ 이하의 미세한 RDS 입자의 제어가 매우 중요한 것으로 나타났다.
본 연구에서는 기존 배관설비 분야에서 다양한 용도로 사용되고 있는 Polly-Pigs를 이용한 건물내 급수관의 스케일을 제거하기 위한 공법을 개발하여 이를 평가하였다. 15mm 노후관의 세관실험결과, KDP series에 의해서 직관부 또는 곡관부의 통수능은 3.5~15.4%까지 증가되는 것으로 나타났으며, 육안분석결과 대부분 제거가 이루어진 부분은 적색 스케일($Fe_2O_3{\cdot}3H_2O$)이었으며, 흑색 스케일($Fe_2O_4{\cdot}nH_2O$)의 제거에는 한계가 있는 것으로 나타났다. 그러나 KDP series의 겉표면에서 Fine sand를 coating한 KDPS series에 의해서는 sand의 효과로 노후관의 통수능이 13.0~17.9%까지 증가되어 통수능이 95.9~99.5%까지 높게 회복되는 것으로 나타났으며, 대부분의 흑색 스케일도 크게 제거되는 것으로 나타났다. 또한 Cleaning v/v의 나선형 가이드 베인(Helical guide vane)과 Pigs의 회전날개(Rotating wing)의 영향으로 주행시 Pigs의 회전력은 크게 향상되어 16배이상 회전수가 증가하는 것으로 나타났다. 이로 인해 100mm 급수관의 세관에서는 통수능이 90%인 노후관이 세관 후 통수능이 완전히 회복되는 것으로 나타났다. 또한 15mm 급수관에 비하여 매우 낮은 압력하에서도 세관효과가 높은 것으로 나타나 관경이 클수록 세관에 필요한 세관압력은 크게 감소되며, 세관효과는 증가되는 것으로 나타났다.
본 연구는 기구등에 오염된 E. coli와 S. aureus를 제어하기 위해 이산화염소의 농도별 접촉시간에 따른 살균소독력을 평가하여 살균예측모델을 개발하였다. E. coli의 경우 초기균수가 9.13 log CFU/mL이었고, 청정조건에서 5ppm으로 1분, 3분, 5분 처리한 결과 각각 0.04, 0.07, 0.10 log CFU/mL의 감소값을 나타내었다. 20 ppm을 처리한 결과 각각 0.74, 0.79, 0.84 log CFU/mL의 감소값을 나타내었다. 또한 CCD에 의한 최대농도 35 ppm으로 처리한 결과 각각 2.49, 2.70, 3.65 log CFU/mL의 감소값을 나타내었다. S. aureus의 경우 초기균수가 8.70 log CFU/mL이었고, 청정조건에서 5 ppm으로 1분, 3분, 5분 처리한 결과 각각 0.14, 0.28, 0.36 log CFU/mL의 감소값을 나타내었다. 20 ppm을 처리한 결과 각각 0.66, 0.79, 0.90 log CFU/mL의 감소값을 나타내었다. 또한 CCD에 의한 최대농도 35 ppm으로 처리한 결과 각각 4.59, 5.25, 5.81 log CFU/mL의 감소값을 나타내었다. 따라서 이산화염소의 살균소독력 평가결과는 E. coli와 S. aureus에 대하여 식품의약품안전처 살균소독력 기준에 모두 만족하는 것으로 나타났다. 살균예측모델의 경우, $R^2$값이 모두 0.98 이상으로 두 균주에 대해 모두 높은 적합성을 보였다. 본 연구에서 개발된 이산화염소의 살균예측모델을 식품산업 적용을 위한 기초자료로 활용함으로써 E. coli와 S. aureus를 적절한 농도와 접촉시간으로 제어할 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.