• Title/Summary/Keyword: classical solution

Search Result 393, Processing Time 0.032 seconds

Buckling of laminated composite plates with elastically restrained boundary conditions

  • Kouchakzadeh, Mohammad Ali;Rahgozar, Meysam;Bohlooly, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.577-588
    • /
    • 2020
  • A unified solution is presented for the buckling analysis of rectangular laminated composite plates with elastically restrained edges. The plate is subjected to biaxial in-plane compression, and the boundary conditions are simulated by employing uniform distribution of linear and rotational springs at all edges. The critical values of buckling loads and corresponding modes are calculated based on classical lamination theory and using the Ritz method. The deflection function is defined based on simple polynomials without any auxiliary function. The verifications of the current study are carried out with available combinations of classic boundary conditions in the literature. Through parametric study with a wide range of spring factors with some classical as well as some not classical boundary conditions, competency of the present model of boundary conditions is proved.

Classical shell theory for instability analysis of concrete pipes conveying nanofluid

  • Keikha, Reza;Heidari, Ali;Hosseinabadi, Hamidreza;Haghighi, Mohammad Salkhordeh
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2018
  • This paper deals with the instability analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The fluid is mixed by $AL_2O_3$ nanoparticles where the effective material properties of fluid are obtained by mixture rule. The applied force by the internal fluid is calculated by Navier-Stokes equation. The structure is simulated by classical cylindrical shell theory and using energy method and Hamilton's principle, the motion equations are derived. Based on Navier method, the critical fluid velocity of the structure is calculated and the effects of different parameters such as fluid velocity, volume percent of nanoparticle in fluid and geometrical parameters of the pipe are considered. The results present that with increasing the volume percent of nanoparticle in fluid, the critical fluid velocity increase.

An improved Kalman filter for joint estimation of structural states and unknown loadings

  • He, Jia;Zhang, Xiaoxiong;Dai, Naxin
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • The classical Kalman filter (KF) provides a practical and efficient way for state estimation. It is, however, not applicable when the external excitations applied to the structures are unknown. Moreover, it is known the classical KF is only suitable for linear systems and can't handle the nonlinear cases. The aim of this paper is to extend the classical KF approach to circumvent the aforementioned limitations for the joint estimation of structural states and the unknown inputs. On the basis of the scheme of the classical KF, analytical recursive solution of an improved KF approach is derived and presented. A revised form of observation equation is obtained basing on a projection matrix. The structural states and the unknown inputs are then simultaneously estimated with limited measurements in linear or nonlinear systems. The efficiency and accuracy of the proposed approach is verified via a five-story shear building, a simply supported beam, and three sorts of nonlinear hysteretic structures. The shaking table tests of a five-story building structure are also employed for the validation of the robustness of the proposed approach. Numerical and experimental results show that the proposed approach can not only satisfactorily estimate structural states, but also identify unknown loadings with acceptable accuracy for both linear and nonlinear systems.

GLOBAL SOLUTIONS TO CHEMOTAXIS-HAPTOTAXIS TUMOR INVASION SYSTEM WITH TISSUE RE-ESTABLISHMENT

  • Kang, Ensil;Lee, Jihoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.161-172
    • /
    • 2015
  • In this paper, we consider the chemotaxis-haptotaxis model of tumor invasion with the proliferation and tissue re-establishment term in dimensions one and two. We show the global in time existence of a unique classical solution for the the model in two dimensional spatial domain without any restrictions on the coefficients.

SOLVING SYSTEMS OF EQUIVALENTIONS

  • BAN A. I.;BICA A. A.
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.97-118
    • /
    • 2006
  • We obtain a property of distributivity in the equivalence form over LR fuzzy intervals. As an application and main result of the paper, we give a determinant method to solve systems of linear equivalentions. The expected value of the obtained solution is equal to the corresponding solution of the classical system of linear equations considering the expected values as data.

General Set Covering for Feature Selection in Data Mining

  • Ma, Zhengyu;Ryoo, Hong Seo
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • Set covering has widely been accepted as a staple tool for feature selection in data mining. We present a generalized version of this classical combinatorial optimization model to make it better suited for the purpose and propose a surrogate relaxation-based procedure for its meta-heuristic solution. Mathematically and also numerically with experiments on 25 set covering instances, we demonstrate the utility of the proposed model and the proposed solution method.

A CONVERGENCE RESULTS FOR ANTIPLANE CONTACT PROBLEM WITH TOTAL SLIP RATE DEPENDENT FRICTION

  • AMMAR, DERBAZI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.813-823
    • /
    • 2021
  • In this work, we present the classical formulation for the antiplane problem of a eletro-viscoelastic materialswith total sliprate dependent friction and write the corresponding variational formulation. In the second step, we prove that the solution converges to the solution of the corresponding electro-elastic problem as the viscosity converges to zero.

Kirkwood-Buff Solution Theory (커크우드-버프 용액 이론)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.452-460
    • /
    • 2010
  • Any theory of liquid should account for interactions between molecules, since molecules in a liquid are close to each other. For this matter statistical-mechanical methodology has been used and various models have been proposed on the basis of this methodology. Among them Kirkwood-Buff solution theory has attracted a lot of interest, because it is regarded as being the most powerful. In this article Kirkwood-Buff solution theory is revisited and its key equations are derived. On the way to these equations, the concepts of pair correlation function, radial distribution function, Kirkwood-Buff integration are explained and implemented. Since complexity of statical mechanics involved in this theory, the equations are applied to one-component systems and the results are compared to those obtained by classical thermodynamics. This may be a simple way for Kirkwood-Buff solution theory to be examined for its validity.