Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.5.577

Buckling of laminated composite plates with elastically restrained boundary conditions  

Kouchakzadeh, Mohammad Ali (Department of Aerospace Engineering, Sharif University of Technology)
Rahgozar, Meysam (Department of Aerospace Engineering, Sharif University of Technology)
Bohlooly, Mehdi (Department of Aerospace Engineering, Sharif University of Technology)
Publication Information
Structural Engineering and Mechanics / v.74, no.5, 2020 , pp. 577-588 More about this Journal
Abstract
A unified solution is presented for the buckling analysis of rectangular laminated composite plates with elastically restrained edges. The plate is subjected to biaxial in-plane compression, and the boundary conditions are simulated by employing uniform distribution of linear and rotational springs at all edges. The critical values of buckling loads and corresponding modes are calculated based on classical lamination theory and using the Ritz method. The deflection function is defined based on simple polynomials without any auxiliary function. The verifications of the current study are carried out with available combinations of classic boundary conditions in the literature. Through parametric study with a wide range of spring factors with some classical as well as some not classical boundary conditions, competency of the present model of boundary conditions is proved.
Keywords
laminates; arbitrary boundary conditions; buckling; linear and rotational springs; elastic constraints;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Liu, G., Chen, X., Reddy, J. (2002), "Buckling of symmetrically laminated composite plates using the element-free Galerkin method", J. Struct. Stability Dynam. 2, 281-294. https://doi.org/10.1142/S0219455402000634.   DOI
2 Lopatin, A., Morozov, E. (2009), "Buckling of the SSFF rectangular orthotropic plate under in-plane pure bending", Compos. Struct., 90, 287-294. https://doi.org/10.1016/j.compstruct.2009.03.006.   DOI
3 Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68, 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010.   DOI
4 Mijuskovic, O., Coric, B., Scepanovic, B. (2014), "Exact stress functions implementation in stability analysis of plates with different boundary conditions under uniaxial and biaxial compression", Thin-Walled Struct., 80, 192-206. https://doi.org/10.1016/j.tws.2014.03.006.   DOI
5 Mijuskovic, O., Coric, B., Scepanovic, B. (2015), "Accurate buckling loads of plates with different boundary conditions under arbitrary edge compression", J. Mech. Sci.,101, 309-323. https://doi.org/10.1016/j.ijmecsci.2015.07.017.   DOI
6 Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", 51, 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.   DOI
7 Mirzavand, B. and Bohlooly, M. (2015), "Thermal buckling of piezolaminated plates subjected to different loading conditions", J. Thermal Stresses, 38, 1138-1162. https://doi.org/10.1080/01495739.2015.1073506.   DOI
8 Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", J. Pressure Vessels Piping, 84, 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.   DOI
9 Nosier, A., Kapania, R., Reddy, J. (1994), "Low-velocity impact of laminated composites using a layerwise theory", Comput. Mech., 13, 360-379. https://doi.org/10.1007/BF00512589.   DOI
10 Mirzavand, B., Bohlooly, M. (2019), "Higher-Order Stability Analysis of Imperfect Laminated Piezo-Composite Plates on Elastic Foundations Under Electro-Thermo-Mechanical Loads", J. Solid Mech., 11, 550-569. https://doi.org/10.22034/JSM.2019.666689.
11 Ghasemabadian, M., Saidi, A. (2017), "Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution", Struct. Eng. Mech., 62, 675-693. https://doi.org/10.12989/sem.2017.62.6.675.   DOI
12 Dietrich, L., Kawahara, W., Phillips, A. (1978), "An experimental study of plastic buckling of a simply supported plate under edge thrusts", Acta Mechanica, 29, 257-267. https://doi.org/10.1007/BF01176641.   DOI
13 Fard, K.M., Bohlooly, M. (2017), "Postbuckling of piezolaminated cylindrical shells with eccentrically/concentrically stiffeners surrounded by nonlinear elastic foundations", Compos. Struct., 171, 360-369. https://doi.org/10.1016/j.compstruct.2017.03.058.   DOI
14 Feng, K., Xu, J. (2016), "Buckling Analysis of Composite Cylindrical Shell Panels by Using Legendre Polynomials Hierarchical Finite-Strip Method", J. Eng. Mech., 143, 04016121. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001181.   DOI
15 Golmakani, M. and Far, M.S. (2017), "Buckling analysis of biaxially compressed double-layered graphene sheets with various boundary conditions based on nonlocal elasticity theory", Microsyst. Technol., 23, 2145-2161. https://doi.org/10.1007/s00542-016-3053-6.   DOI
16 Gunda, J.B. (2013), "Thermal post-buckling analysis of square plates resting on elastic foundation: A simple closed-form solutions", Appl. Math. Modell., 37, 5536-5548. https://doi.org/10.1016/j.apm.2012.09.031.   DOI
17 Hosseini-Hashemi, S., Kermajani, M., Nazemnezhad, R. (2015), "An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory", Europ. J. Mech. A/Solids, 51, 29-43. https://doi.org/10.1016/j.euromechsol.2014.11.005.   DOI
18 Panda, S.K., Ramachandra, L. (2010), "Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads", J. Mech. Sci.,52, 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009.   DOI
19 Uymaz, B., Aydogdu, M. (2013a), "Three dimensional mechanical buckling of FG plates with general boundary conditions", Compos. Struct., 96, 174-193. https://doi.org/10.1016/j.compstruct.2012.07.033.   DOI
20 Uymaz, B., Aydogdu, M. (2013b), "Three dimensional shear buckling of FG plates with various boundary conditions", Compos. Struct., 96, 670-682. https://doi.org/10.1016/j.compstruct.2012.08.031   DOI
21 Qu, Y., Hua, H., Meng, G. (2013), "A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries", Compos. Struct., 95, 307-321. https://doi.org/10.1016/j.compstruct.2012.06.022.   DOI
22 Raju, G., Wu, Z., Kim, B.C., Weaver, P.M. (2012), "Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions", Compos. Struct., 94, 2961-2970. https://doi.org/10.1016/j.compstruct.2012.04.002.   DOI
23 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida, U.S.A.
24 Shufrin, I., Rabinovitch, O. and Eisenberger, M. (2008a), "Buckling of laminated plates with general boundary conditions under combined compression, tension, and shear-A semi-analytical solution", Thin-Walled Structures, 46, 925-938. https://doi.org/10.1016/j.tws.2008.01.040.   DOI
25 Yu, L., Wang, C. (2008), "Buckling of rectangular plates on an elastic foundation using the Levy method", AIAA J., 46, 3163-3167. https://doi.org/10.2514/1.37166.   DOI
26 Shufrin, I., Rabinovitch, O., Eisenberger, M. (2008b), "Buckling of symmetrically laminated rectangular plates with general boundary conditions-A semi analytical approach", Compos. Struct., 82, 521-531. https://doi.org/10.1016/j.compstruct.2007.02.003.   DOI
27 Shukla, K., Nath, Y., Kreuzer, E., Kumar, K. (2005), "Buckling of laminated composite rectangular plates", J. Aerosp. Eng., 18, 215-223. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:4(215).   DOI
28 Singhatanadgid, P., Jommalai, P. (2016), "Buckling analysis of laminated plates using the extended Kantorovich method and a system of first-order differential equations", J. Mech. Sci. Technol., 30, 2121-2131. https://doi.org/10.1007/s12206-016-0419-8.   DOI
29 Wang, C., Zhang, H., Challamel, N., Duan, W. (2017), "On boundary conditions for buckling and vibration of nonlocal beams", Europ. J. Mech. A/Solids, 61, 73-81. https://doi.org/10.1016/j.euromechsol.2016.08.014.   DOI
30 Xiang, Y., Liew, K., Kitipornchai, S. (1996), "Exact buckling solutions for composite laminates: proper free edge conditions under in-plane loadings", Acta Mechanica, 117, 115-128. https://doi.org/10.1007/BF01181041   DOI
31 Zhang, X., Li, W.L. (2009), "Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints", J. Sound Vib., 326, 221-234. https://doi.org/10.1016/j.jsv.2009.04.021.   DOI
32 Baucke, A., Mittelstedt, C. (2015), "Closed-form analysis of the buckling loads of composite laminates under uniaxial compressive load explicitly accounting for bending-twisting-coupling", Compos. Struct., 128, 437-454. https://doi.org/10.1016/j.compstruct.2014.12.054.   DOI
33 Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z., Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66, 761-769. https://doi.org/10.12989/sem.2018.66.6.761.   DOI
34 Bohlooly, M., Malekzadeh Fard, K. (2019), "Buckling and postbuckling of concentrically stiffened piezo-composite plates on elastic foundations", J. Appl. Comput. Mech., 5, 128-140. https://dx.doi.org/10.22055/jacm.2018.25539.1277.
35 Bohlooly, M., Mirzavand, B. (2015), "Closed form solutions for buckling and postbuckling analysis of imperfect laminated composite plates with piezoelectric actuators", Compos. Part B Eng., 72, 21-29. https://doi.org/10.1016/j.compositesb.2014.10.049.   DOI
36 Swaminathan, K., Naveenkumar, D. (2014), "Higher order refined computational models for the stability analysis of FGM plates- Analytical solutions", Europ. J. Mech. A/Solids, 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003.   DOI
37 Iyengar, K.S.R. and Karasimhan, K. (1965), "Buckling of rectangular plates with clamped and simply-supported edges", Publications de l'Institut Mathematique, 19, 31-40.
38 Jin, G., Su, Z., Shi, S., Ye, T., Gao, S. (2014), "Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions", Compos. Struct., 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051.   DOI
39 Song, X., Cao, T., Gao, P., Han, Q. (2020), "Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method", J. Mech. Sci.,165, 105158. https://doi.org/10.1016/j.ijmecsci.2019.105158.   DOI
40 Song, X., Han, Q., Zhai, J. (2015), "Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method", Compos. Struct., 134, 820-830. https://doi.org/10.1016/j.compstruct.2015.08.134.   DOI
41 Tamijani, A.Y., Kapania, R.K. (2012), "Chebyshev-ritz approach to buckling and vibration of curvilinearly stiffened plate", AIAA J., 50, 1007-1018. https://doi.org/10.2514/1.J050042.   DOI
42 Tang, Y., Wang, X. (2011), "Buckling of symmetrically laminated rectangular plates under parabolic edge compressions", Int. J. Mech. Sci., 53, 91-97. https://doi.org/10.1016/j.ijmecsci.2010.11.005.   DOI
43 Li, Q. and Pan Iu, V. (2010), "Three-Dimensional Buckling Analysis of Rectangular Plates with In-Plane Compressive Loads", AIP Conference Proceedings, 674-677. https://doi.org/10.1063/1.3452256.
44 Khov, H., Li, W.L., Gibson, R.F. (2009), "An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions", Compos. Struct., 90, 474-481. https://doi.org/10.1016/j.compstruct.2009.04.020.   DOI
45 Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta Mechanica, 228, 1303-1319. https://doi.org/10.1007/s00707-016-1781-4.   DOI
46 Latifi, M., Farhatnia, F. and Kadkhodaei, M. (2013), "Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion", Europ. J. Mech. A/Solids, 41, 16-27. https://doi.org/10.1016/j.euromechsol.2013.01.008.   DOI
47 Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237, 709-725. https://doi.org/10.1006/jsvi.2000.3150.   DOI
48 Li, W.L. (2004), "Vibration analysis of rectangular plates with general elastic boundary supports", J. Sound Vib., 273, 619-635. https://doi.org/10.1016/S0022-460X(03)00562-5.   DOI
49 Liew, K., Xiang, Y., Kitipornchai, S. (1996), "Analytical buckling solutions for Mindlin plates involving free edges", J. Mech. Sci., 38, 1127-1138. https://doi.org/10.1016/0020-7403(95)00108-5.   DOI
50 Thai, H.-T., Kim, S.-E. (2011), "Levy-type solution for buckling analysis of orthotropic plates based on two variable refined plate theory", Compos. Struct., 93, 1738-1746. https://doi.org/10.1016/j.compstruct.2011.01.012.   DOI
51 Ungbhakorn, V., Singhatanadgid, P. (2006), "Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method", Compos. Struct., 73, 120-128. https://doi.org/10.1016/j.compstruct.2005.02.007.   DOI
52 Aydogdu, M., Aksencer, T. (2018), "Buckling of cross-ply composite plates with linearly varying In-plane loads", Compos. Struct., 183, 221-231. https://doi.org/10.1016/j.compstruct.2017.02.085.   DOI
53 Bohlooly, M., Mirzavand, B. (2016), "A closed-form solution for thermal buckling of cross-ply piezolaminated plates", J. Struct. Stability Dynam. 16, 1450112. https://doi.org/10.1142/S0219455414501120.   DOI
54 Bohlooly, M., Mirzavand, B. (2017), "Thermomechanical buckling of hybrid cross-ply laminated rectangular plates", Adv. Compos. Mater., 26, 407-426. https://doi.org/10.1080/09243046.2016.1197492.   DOI
55 Bohlooly, M., Mirzavand, B. (2018), "Postbuckling and deflection response of imperfect piezo-composite plates resting on elastic foundations under in-plane and lateral compression and electro-thermal loading", Mech. Adv. Mater. Struct., 25, 192-201. https://doi.org/10.1080/15376494.2016.1255818.   DOI
56 Bohlooly, M., Mirzavand, B., Fard, K.M. (2018), "An analytical approach for postbuckling of eccentrically or concentrically stiffened composite double curved panel on nonlinear elastic foundation", Appl. Math. Modell., 62, 415-435. https://doi.org/10.1016/j.apm.2018.06.008.   DOI
57 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11, 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
58 Brush, D.O., Almroth, B.O. and Hutchinson, J. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911. https://doi.org/10.1115/1.3423754.
59 Cetkovic, M. and Vuksanovic, D. (2011), "Large deflection analysis of laminated composite plates using layerwise displacement model", Struct. Eng. Mech., 40, 257-277. https://doi.org/10.12989/sem.2011.40.2.257.   DOI