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SOME PROPERTIES OF SOLUTIONS FOR A SIXTH-ORDER

PARABOLIC EQUATION IN ONE SPATIAL DIMENSION

XIAOPENG ZHAO

Abstract. In this paper, we consider the existence and uniqueness of

global weak solution for a sixth-order classical surface-diffusion equation in
one spatial dimension. Moreover, the regularity and blow-up of solutions
are also studied.
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1. Introduction

In the study of a thin, solid film grown on a solid substrate, in order to
describe the continuum evolution of the film free surface, there arise a classical
surface-diffusion equation (see [1])

vn = D∆Sµ = D∆S(µγ + µw) = D∆S(γ̃αβCαβ + ν∆2u+ µw), (1)

where vn is the normal surface velocity, D = DSS0Ω0V0/(RT )23 (Ds is the
surface diffusivity, S0 is the number of atoms per unit area on the surface, Ω0

is the atomic volume, V0 is the molar volume of lattice cites in the film, R
is the universal gas constant and T is the absolute temperature), ∆S is the
surface Laplace operator, ν is the regularization coefficient that measures the
energy of edges and corners, Cαβ is the surface curvature tensor and µw being
an exponentially decaying function of u that has a singularity at u → 0 (see [1]).

In the small-slop approximation, in the particular cases of high-symmetry ori-
entations of a crystal with cubic symmetry, neglect the exponentially decaying,
consider the 1D case, then the evolution equation (1) for the film thickness can
be written in the following form

∂u

∂t
= DD2[σD2u+ µD4u− a|Du|2D2u], (2)
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(see [1]). Moreover, from a mathematical point of view, we will consider the
nonlinear parabolic problem

∂u
∂t = γD6u+ kD4u− αD2(|Du|p−2D2u), in QT ,
u(x, t) = D2u(x, t) = D4u(x, t) = 0, x = 0, 1,
u(x, 0) = u0(x),

(3)

where QT = (0, 1)× (0, T ) and p > 2, γ, k > 0, α are constants.
In this paper, we consider some properties of solutions for problem (3). This

paper is organized as follows. In the next section, we establish the existence
of global weak solution in the space H6,1(QT ). In Section 3, we consider the
regularity of the solution for problem (3). In the last section, we consider the
blow-up of solutions for the above problem.

In the following, the letters C, Ci, (i = 0, 1, 2, · · · ) will always denote positive
constants different in various occurrences.

2. Global weak solution

In this section, we consider the existence and uniqueness of global weak solu-
tions of the problem (3).

Theorem 2.1. Assume that α > 0, p ≥ 4, u0 ∈ H3(0, 1) with Diu0(0, t) =
Diu0(1, t) = 0 (i = 0, 2)), then for all t ∈ (0, T ), there exists a unique solution
u(x, t) such that

u(x, t) ∈ L2(0, T ;H6(0, 1))
∩

L∞(0, T ;H3(0, 1)).

Proof. Multiplying the equation of (3) by u and integrating with respect to x
over (0, 1), we obtain

1

2

d

dt

∫ 1

0

u2dx+ γ

∫ 1

0

|D3u|2dx+ α

∫ 1

0

|Du|p−2(D2u)2dx = k

∫ 1

0

|D2u|2dx.

Noticing that

k

∫ 1

0

|D2u|2dx =− k

∫ 1

0

DuD3udx ≤ k2

γ

∫ 1

0

|Du|2dx+
γ

4

∫ 1

0

|D3u|2dx

=− k2

γ

∫ 1

0

uD2udx+
γ

4

∫ 1

0

|D3u|2dx

≤k

2

∫ 1

0

|D2u|2dx+
k3

2γ2

∫ 1

0

u2dx+
γ

4

∫ 1

0

|D3u|2dx,

Hence, a simple calculation shows that

d

dt

∫ 1

0

u2dx+ γ

∫ 1

0

|D3u|2dx ≤ 2k3

γ2

∫ 1

0

u2dx. (4)

Gronwall’s inequality implies that

sup
0<t<T

∫ 1

0

u2dx ≤ C, and

∫∫
QT

|D3u|2dxdt ≤ C. (5)
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The energy function is

F (t) =
γ

2

∫ 1

0

|D2u|2dx− k

2

∫ 1

0

|Du|2dx+
α

p(p− 1)

∫ 1

0

|Du|pdx.

Integrations by parts and (3) yield

dF (t)

dt
=

∫ 1

0

[γD4u+ kD2u− α

p− 1
D(|Du|p−2Du)]utdx

=

∫ 1

0

[γD4u+ kD2u− α

p− 1
D(|Du|p−2Du)]

·D2[γD4u+ kD2u− α

p− 1
D(|Du|p−2Du)]dx

=−
∫ 1

0

|D[γD4u+ kD2u− α

p− 1
D(|Du|p−2Du)]|2dx ≤ 0.

Therefore

F (t) =
γ

2

∫ 1

0

|D2u|2dx− k

2

∫ 1

0

|Du|2 + α

p(p− 1)

∫ 1

0

|Du|pdx

≤F (0) =
γ

2

∫ 1

0

|D2u0|2dx− k

2

∫ 1

0

|Du0|2 +
α

p(p− 1)

∫ 1

0

|Du0|pdx.

That is

γ

2

∫ 1

0

|D2u|2dx ≤ γ

2

∫ 1

0

|D2u0|2 +
k

2

∫ 1

0

|Du|2dx+
α

p(p− 1)

∫ 1

0

|Du0|pdx.

It then follows from (5) that∫ 1

0

|Du|2dx ≤ γ

2k

∫ 1

0

|D2u|2dx+
k

2γ

∫ 1

0

u2dx ≤ γ

2k

∫ 1

0

|D2u|2dx+ C.

Summing the above two inequalities together, we get

sup
0<t<T

∫ 1

0

|D2u|2dx ≤ C and sup
0<t<T

∫ 1

0

|Du|2dx ≤ C. (6)

By (5), (6) and Sobolev’s embedding theorem, we have(∫ 1

0

|u|qdx
) 1

q

≤ C∥u∥H1 ≤ C, ∀q ∈ (0,+∞]. (7)

(∫ 1

0

|Du|qdx
) 1

q

≤ C∥u∥H2 ≤ C, ∀q ∈ (0,+∞]. (8)

Again multiplying the equation of (3) by D6u and integrating with respect to x
over (0, 1), we obtain

1

2

d

dt

∫ 1

0

|D3u|2dx+ γ

∫ 1

0

|D6u|2dx = k

∫ 1

0

|D5u|2dx+ α

∫ 1

0

D2(|Du|p−2D2u)D6udx.
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By Nirenberg’s inequality, we get

C

∫ 1

0
|D2u|6dx ≤C′

(∫ 1

0
|D6u|2dx

) 1
4
(∫ 1

0
|D2u|2dx

) 11
4

≤
γ

10

∫ 1

0
|D6u|2dx+ C1.

C

∫ 1

0
|D2u|4dx ≤C′

(∫ 1

0
|D6u|2dx

) 1
4
(∫ 1

0
|D2u|2dx

) 7
4

≤
γ

10

∫ 1

0
|D6u|2dx+ C2.

C

∫ 1

0
|D3u|4dx ≤C′

(∫ 1

0
|D6u|2dx

) 5
8
(∫ 1

0
|D2u|2dx

) 11
8

≤
γ

10

∫ 1

0
|D6u|2dx+ C3.

and

C

∫ 1

0
|D4u|2dx ≤ C′

(∫ 1

0
|D6u|2dx

) 1
2
(∫ 1

0
|D2u|2dx

) 1
2

≤
γ

10

∫ 1

0
|D6u|2dx+ C4. (9)

Using (8) and above four inequalities, we derive that

α

∫ 1

0

D2(|Du|p−2D2u)D6udx

≤α(p− 2)(p− 3)

∫ 1

0

|Du|p−4|D2u|3D6udx

+ 3α(p− 2)

∫ 1

0

|Du|p−3D2uD3uD6udx+ α

∫ 1

0

|Du|p−2D4uD6udx

≤α(p− 2)(p− 3) sup
x∈[0,1]

|Du|p−4 ·
∫ 1

0

|D2u|3D6udx

+ 3α(p− 2) sup
x∈[0,1]

|Du|p−3 ·
∫ 1

0

D2uD3uD6udx

+ sup
x∈[0,1]

|Du|p−2 · α
∫ 1

0

D4uD6udx

≤C(

∫ 1

0

|D2u|6dx+

∫ 1

0

|D2u|4dx+

∫ 1

0

|D3u|4dx+

∫ 1

0

|D4u|2dx) + γ

5

∫ 1

0

|D6u|2dx

≤2γ

5

∫ 1

0

|D6u|2dx+ C.

On the other hand, we also have

k

∫ 1

0

|D5u|2dx ≤C ′
(∫ 1

0

|D6u|2dx
) 3

4
(∫ 1

0

|D2u|2dx
) 1

4

≤ γ

10

∫ 1

0

|D6u|2dx+ C5.

(10)

Then, summing up, we get

d

dt

∫ 1

0

|D3u|2dx+ γ

∫ 1

0

|D6u|2dx ≤ C. (11)

Hence

sup
0<t<T

∫ 1

0

|D3u|2dx ≤ C and

∫∫
QT

|D6u|2dxdt ≤ C. (12)



Solutions for a sixth-order parabolic equation 551

Therefore, by (9), (10) and (12), we immediately obtain∫∫
QT

|D4u|2dxdt ≤ C and

∫∫
QT

|D5u|2dxdt ≤ C. (13)

The a priori estimates (5)-(6) and (12)-(13) complete the proof of global
existence of a u(x, t) ∈ L2(0, T ;H6(0, 1))

∩
L∞(0, T ;H3(0, 1)).

Since the proof of uniqueness of global solution is so easy, we omit it here.
Then, we complete the proof. �

3. Regularity

The following Lemma (see [4]) will be used to prove the main result of this
section.

Lemma 3.1. Assume that sup |f | < +∞, a(x, t) ∈ Cκ,κ6 (Q̄T ), 0 < α < 1,
and there exist two constants a0, b0, A0, B0 such that 0 < a0 ≤ a(x, t) ≤ A0,
0 < b0 ≤ b(x, t) ≤ B0 for all (x, t) ∈ QT . If u is a smooth solution for the
following linear problem

∂u

∂t
+D3(a(x, t)D3u) +D3(b(x, t)Du) = D3f, (x, t) ∈ QT ,

Du(x, t)|x=0,1 = D3u(x, t)|x=0,1 = D5u(x, t)|x=0,1 = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [0, 1],

then, for any δ ∈ (0, 1
2 ), there is a constant C depending on a0, b0, A0, B0, δ,

T ,
∫∫

QT
u2dxdt and

∫∫
QT

|D3u|2dxdt, such that

|u(x1, t1)− u(x2, t2)| ≤ C(1 + sup |f |)(|x1 − x2|δ + |t1 − t2|
δ
6 ).

Now, we turn our discussion to the regularity of solutions.

Theorem 3.2. Assume that p ≥ 6, u0 ∈ C6+κ[0, 1], (0 < κ < 1), then for any
smooth initial value u0, problem (3) admits a unique classical solution u(x, t) ∈
C6+κ,1+κ

6 (Q̄T ).

Proof. By (5) and (8), we have

|u(x1, t)− u(x2, t)| ≤ C|x1 − x2|κ, κ ∈ (0, 1).

Integrating the equation of (3) with respect to x over (y, y + (∆t)
1
6 ) × (t1, t2),

where 0 < t1 < t2 < T , ∆t = t2 − t1, we see that∫ y+(∆t)
1
6

y

[u(z, t2)− u(z, t1)]dz

=

∫ t2

t1

[γD5u(y′, s) + kD3u(y′, s)− αD(|Du(y′, s)|p−2D2u(y′, s))

− γD5u(y, s)− kD3u(y, s) + αD(|Du(y, s)|p−2D2u(y, s))]ds,

(14)
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where y′ = y + (∆t)
1
6 . For simplicity, set

N(y, s) =γD5u(y′, s) + kD3u(y′, s)− αD[|Du(y′, s)|p−2D2u(y′, s)]

− γD5u(y, s)− kD3u(y, s) + αD[|Du(y, s)|p−2D2u(y, s)].

Then, (14) is converted into

(∆t)
1
6

∫ 1

0

[u(y + θ(∆t)
1
6 , t2)− u(y + θ(∆t)

1
6 , t1)]dθ =

∫ t2

t1

N(y, s)ds.

Integrating the above equality with respect to y over (x, x + (∆t)
1
6 , we derive

that

(∆t)
1
3 (u(x∗, t2)− u(x∗, t1)) =

∫ t2

t1

∫ x+(∆t)
1
6

x

N(y, s)dyds.

Here, we have used the mean value theorem, where x∗ = y∗ + θ∗(∆t)
1
6 , y∗ ∈

(x, x + (∆t)
1
6 ), θ∗ ∈ (0, 1). Then, by Hölder’s inequality and (8), (13), we end

up with
|u(x∗, t2)− u(x∗, t1)| ≤ C(∆t)

κ
6 , α ∈ (0, 1).

Similar to the discussion above , we have

|Du(x1, t1)−Du(x2, t2)| ≤ C(|x1 − x2|
1
2 + |t1 − t2|

1
12 ). (15)

and

|D2u(x1, t1)−D2u(x2, t2)| ≤ C(|x1 − x2|
1
2 + |t1 − t2|

1
12 ). (16)

We shall consider the Hölder estimate of D2u based on Lemma 3.1. Suppose
that w = D2u−D2u0, then w satisfies the following problem

∂w

∂t
−D3(a(x, t)D3w) +D3(b(x, t)Dw) = D3f,

w(x, t) = D2w(x, t) = D4w(x, t) = 0, x = 0, 1,

w(x, 0) = 0, x ∈ [0, 1],

(17)

where a(x, t) = γ, b(x, t) = k and

f(x, t) = −γD5u0 − kD3u0 + αD(|Du|p−2D2u)].

Define the linear spaces

X = {u ∈ C1+κ, 1+κ
6 (Q̄T );u|x=0,1 = D2u|x=0,1 = 0, u(x, 0) = u0(x)}

and the associated operator T : X → X,u → v, where v is determined by the
following linear problem

vt − γD6v + (α|Du|p−2 − k)D4v + 3α(p− 2)|Du|p−2D2uD3v
+α(p− 2)(p− 3)|Du|p−4D2v = 0, (x, t) ∈ Ω× (0, T ),
v(x, t)|x=0,1 = D2v(x, t)|x=0,1 = D4v(x, t)|x=0,1 = 0,
v(x, 0) = v0(x).

(18)

From the classical parabolic theory (see[3, 5]), we know that the above problem
admits a unique solution in the space C6+κ,1+κ

6 (Q̄T ). Thus, the operator T is
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well defined. It follows from the embedding theorem that the operator T is a
compact operator. If u = σTu holds for some σ ∈ (0, 1], then by the previous
arguments, we know that there exists a constant C which is independent of u and
σ, such that ∥u∥

C6+κ,1+κ
6 (Q̄T )

≤ C. Then, it follows from the Leray-Schauder

fixed point theorem that the operator T admits a fixed point u, which is the
desired solution of problem (3). Furthermore, by the above arguments, we know
that u is a classical solution. �

4. Blow-up

In the previous section, we have seen that the solution of problem (3) is
globally classical, provided that α > 0. The following theorem shows that the
solution of the problem (3) blows up at a finite time for α < 0 and F (0) ≤ 0.

Theorem 4.1. Assume u0 ̸≡ 0, p > 2, α < 0 and F (0) ≤ 0, then the solution
of problem (3) must blow up at a finite time, namely, for some T ∗ > 0,

lim
t→T∗

∥u(t)∥ = +∞.

Proof. Without loss of generality, we assume that
∫ 1

0
u0dx = 0. Otherwise, we

may replace u by v = u − M , where M =
∫ 1

0
u0dx. For the energy functional

F (t),a direct calculation yields that F ′(t) ≤ 0, which implies that F (t) ≤ F (0).
Let ω be the unique solution of the problem

D2ω = u,
Dω|x=0,1 = 0,∫ 1

0
ωdx = 0.

Based on the equation of (3), we immediately obtain
∫ 1

0
u(x, t)dx =

∫ 1

0
u0(x)dx,

then, such function as ω is exists, which satisfies∫ 1

0

|Dω|2dx ≤
∫ 1

0

u2dx. (19)

Multiplying the equation of (3) by ω and integrating with respect to x over (0, 1),
integrating by parts and using the boundary value conditions, we deduce that

d

dt

∫ 1

0

|Dω|2dx =− α

p− 1

∫ 1

0

|Du|pdx+ k

∫ 1

0

|Du|2dx− γ

∫ 1

0

|D2u|2dx

≥− α

p− 1

∫ 1

0

|Du|pdx+
2α

p(p− 1)

∫ 1

0

|Du|pdx− 2F (0)

=
α

p− 1

(
2α

p
− 1

)∫ 1

0

|Du|pdx− 2F (0)

≥ α

p− 1

(
2α

p
− 1

)∫ 1

0

|Du|pdx.

(20)
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By Poincaré’s inequality and the embedding of Lp space, we get(∫ 1

0

|Dω|2dx
) p

2

≤ C

(∫ 1

0

|u|2dx
) p

2

≤ C

(∫ 1

0

|Du|2dx
) p

2

≤ C

∫ 1

0

|Du|pdx.

It then follows from (20) that

d

dt

∫ 1

0

|Dω|2dx ≥ α(2α− p)C

p(p− 1)

(∫ 1

0

|Dω|2dx
) p

2

. (21)

A direct integration of (21), we obtain(∫ 1

0

|Dω|2dx
) p

2−1

≥ 1(∫ 1

0
|Dω0|2dx

)1− p
2 − κt

,

where κ = α(2α−p)(p−2)C
2p(p−1) . Noticing that u0 ̸≡ 0, then

∫ 1

0
|Dω0|2dx ̸≡ 0. Com-

bining (19) and above inequality, setting T ∗ = 1
κ (
∫ 1

0
|Dω0|2dx)1−

p
2 , we get u

must blow up in a finite time T ∗. �
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