• 제목/요약/키워드: class field tower

검색결과 12건 처리시간 0.027초

HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY QUADRATIC FUNCTION FIELDS

  • Ahn, Jaehyun;Jung, Hwanyup
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.699-704
    • /
    • 2010
  • In this paper, we prove that the Hilbert 2-class field tower of an imaginary quadratic function field $F=k({\sqrt{D})$ is infinite if $r_2({\mathcal{C}}(F))=4$ and exactly one monic irreducible divisor of D is of odd degree, except for one type of $R{\acute{e}}dei$ matrix of F. We also compute the density of such imaginary quadratic function fields F.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.