• 제목/요약/키워드: clamp circuit

검색결과 143건 처리시간 0.027초

동기 정류기를 이용한 태양광 모듈용 플라이백 인버터 소프트 스위칭 제어 기법 (Soft Switching Control Method for Photovoltaic AC Module Flyback Inverter using Synchronous Rectifier)

  • 장진우;김영호;최봉연;정용채;원충연
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.312-321
    • /
    • 2013
  • In this paper, high efficiency control method for flyback inverter with synchronous rectifier(SR) based on photovoltaic AC modules is proposed. In this control method, the operation of SR is classified according to the voltage spike across main switch SP. When the voltage spike across SP is lower than the rating voltage of SP, the operation of active clamp circuit is interrupted for reducing the switching loss of auxiliary switch. In this time, the SR is operated for soft-switching of SP. When the voltage spike across Sp is higher than the rating voltage of SP, the operation of active circuit is activated for reducing the voltage spike. The SR is operated for reducing the conduction loss of secondary output diode. Thus, a switching loss of the main switch can be reduced in low power region, and weighted-efficiency can be improved. A theoretical analysis and the design principle of the proposed method are provided. And validity is confirmed through simulation and experimental results.

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

AT 포워드 다중 공진형 컨버터의 동작 특성 (The operational characteristics of the AT Forward Multi-Resonant Converter)

  • 김창선
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.114-123
    • /
    • 1998
  • The multi-resonant converter(MRC) minimizes a parasitic oscillation by using the resonant tank circuit absorbed parasitic reactances existing in a converter circuit. So it si possible that the converter operated at a high frequency has a high efficiency because the losses are reduced. Such a MHz high frequency applications provide a high power density [W/inch3] of the converter. But the resonant voltage stress across a switch of the resonant tank circuit is 4~5 times a input voltage. This h호 voltage stress increases the conduction loss because of on-resistance of a MOSFET with higher rating. Thus, in this paper we proposed the alternated multi-resonant converter (AT MRC) differ from the clamp mode multi-resonant converter and applicated it to the forward MRC. The AT forward MRC can reduce the voltage stress to 2~3 times a input voltage by using two series input capacitor. The control circuit is simple because tow resonant switches are driven directly by the output pulse of the voltage controled oscillator. This circuit type is verified through the experimental converter with 48V input voltage, 5V/50W output voltage/power and PSpice simulation. the measured maximum voltage stress is 170V of 2.9 times the input voltage and the maximum efficiency of 81.66% is measured.

  • PDF

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

공진형 직류 링크 인버터의 공진 펄스 제어기 (A novel resonant pulse control in resonant DC link inverter)

  • 유동욱;원충연
    • 전자공학회논문지B
    • /
    • 제33B권5호
    • /
    • pp.152-158
    • /
    • 1996
  • A novel resonant pulse control technique which generates high-quality sinusoidal output voltage from a resonant dc link inverter is presented for UPS applicatons. The proposed control technique limits resonant voltae overshoot without any passive or active clamp circuit, resulting in resonant pulses iwth uniform amplitude and high efficiency. The output voltage is controlled by the third order contorller iwth an inner loop of th efilter inductor current and the feedforward controller. Analysis and design of the proposed control technique are illustrated and verified on a 5kVA experimental unit.

  • PDF

동기 스위치 제어를 통한 영전압 동작 고효율 능동 클램프 포워드 컨버터 (High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation)

  • 이성세;최성욱;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.266-268
    • /
    • 2005
  • A new synchronous switch controlled transient current build-up zero voltage switching (TCB-ZVS) forward converter is proposed. The proposed converter is suitable for the low-voltage and high-current applications. The features of the proposed converter are low conduction loss of magnetizing current, no additional circuit for the ZVS operation, high efficiency, high power density and low EMI noise throughout all load conditions.

  • PDF

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

외부프로그램 전압을 이용한 8비트 eFuse OTP IP 설계 (Design of an 8-Bit eFuse One-Time Programmable Memory IP Using an External Voltage)

  • 조규삼;김미영;강민철;장지혜;하판봉;김영희
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.183-190
    • /
    • 2010
  • 본 논문에서는 외부 프로그램 전압으로 프로그램 가능한 로직 공정 기반의 eFuse OTP 셀을 제안하였다. 기존의 eFuse OTP 메모리 셀은 eFuse의 양극 (anode)에 연결된 SL (Source Line)으로 SL 구동회로의 전압강하를 거치면서 프로그램 데이터가 공급된 반면, 새롭게 제안된 eFuse 셀은 NMOS 프로그램 트랜지스터의 게이트에 프로그램 데이터가 공급되고 eFuse의 양극에 3.8V의 외부 프로그램 전압 (FSOURCE)이 전압강하 없이 공급된다. 그리고 제안된 셀의 FSOURCE 전압은 읽기 모드에서 0V 또는 플로팅 상태를 유지한다. 한편 본 논문에서는 FSOURCE 핀의 전압이 플로팅 상태인 경우는 회로적으로 0V로 바이어싱 하는 클램프 회로를 제안하였고, 로직 전압인 VDD (=1.8V)와 FSOURCE전압 사이에 스위칭 해주는 VPP 스위칭 회로를 제안하였다. 동부하이텍 $0.15{\mu}m$ generic 공정으로 설계된 8비트 eFuse OTP IP의 레이아웃 면적은 $359.92{\times}90.98{\mu}m^2$이다.

모듈형 계통연계 PV PCS (Modular Line-connected Photovoltaic PCS)

  • 서현우;권정민;김응호;권봉환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.289-292
    • /
    • 2007
  • The modular line-connected photovoltaic PCS (power conditioning system) is proposed. The proposed system consists of a step-up DC-DC converter and a full-bridge inverter. A step-up DC-DC converter using a dual series-resonant rectifier circuit and a active-clamp circuit is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed algorithms and controllers is proved by experiments.

  • PDF

새로운 고효율 계통연계 1kW 연료전지용 PCS (A Noval High Efficiency Grid Connected 1kW PCS for Fuel Cell)

  • 김태진
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.417-422
    • /
    • 2008
  • In this paper, a novel DC/DC low-voltage high-current converter circuit is proposed to improve the efficiency of power converter used in the grid-connected fuel-cell generator system. We proposed a novel high efficiency grid-connected power conditioning system for RPG fuel cell. On the result of that, the loss of system was decreased rapidly by driving stack within the condition of maximum efficiency. The peak currents of the current-type inductor and the transformer's coil are reduced by synchronizing switching frequency of Buck-type converter is increased twice as the Push-Pull converter's switching frequency. The novel structure of DC/DC converter is able to realize ZVS-ZCS in fuel-cell system is proposed. The proposed switching component of Push-Pull converter has the ZVS and ZCS function by using the circuit of new passive clamp.