• Title/Summary/Keyword: citrus leaves

Search Result 90, Processing Time 0.021 seconds

Rapid Identification of Diaporthe citri by Gene Sequence Analysis

  • Zar Zar Soe;Yong Ho Shin;Hyun Su Kang;Mi Jin Kim;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.130-136
    • /
    • 2023
  • Citrus melanoses caused by Diaporthe citri, has been one of the serious diseases in many citrus orchards of Jeju Island. To protect melanose in citrus farms, a fast and exact diagnosis method is necessary. In this study, diseased leaves and dieback twigs were collected from a total of 49 farms within March to April in 2022. A total of 465 fungal isolates were obtained from a total of 358 isolated plant samples. Among these fungal isolates, 40 representatives of D. citri isolates which were isolated from 22 twigs and 18 leaves on 23 farms were found based on cultural characteristics on potato dextrose agar and conidial morphology. Additionally, the molecular assay was carried out and compared with those by morphological diagnosis. All isolates were identified as D. citri by analyzing the sequences at the internal transcribed spacer (ITS) rDNA region using primers of ITS1/ITS4 or at β-tubulin using primer Btdcitri-F/R. Therefore, based on the present study, where the results of morphological identification of conidial type were consistent with DNA sequence analysis of certain gene, choosing a suitable method for a fast diagnosis of citrus melanose was suggested.

Microstructural Characteristics of the Ordered and Disordered Leaves in Citrus junos Sieb.

  • Park, Min-Hee;Boo, Hee-Ock;Kim, Hong-Sub;Lee, Sook-Young
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.163-172
    • /
    • 2000
  • We compared microstructural features of the ordered cell and disordered leaves in Citrus junos Sieb. by electron microscopy. In the cell of the ordered leaves, many chloroplasts and large vacuoles were particularly observed. Also a lot of vessel, companion cell and big nucleus were presented in vascular bundle regions. The mitochondria and the other organelles were interspersed among the chloroplasts in a thin, peripheral layer of cytoplasm. The chloroplast possessed typical grana and intergranal lamellae, numerous starch grains and a few small osmophilic globules. Besides, microbodies were closely associated with the mitochondria and the chloroplast. The process of the formation of the secondary cell wall from primary cell wall was observed the vessel elements, the tonoplast wall and the secondary cell wall. It was observed that the oil sac with the unique perfume distributed the adjacent cell wall. In the cell of disordered leaves, the all of the organelles were thrust toward the cell wall due to the fusion of vacuoles in the cells. It was observed that a lot of the very small particles spreaded in the cytoplasm. The loss of unique perfume of the leaves was resulted in the destruction of the oil sac. Also, there was not observed grana, lamellae, starch and osmophillic globules in the chloroplast. The small distributed organelles was not observed but the elongation of the cell wall was proceed no longer. Therefore, the plasma membrane diverged from the cell wall. All of organelles in the cell had poor function and deformation. A massive vacuole was fulfilled in single cell and the vacuole contains a lot of large and small particles. The organelles were presented on the side of the cell wall according to the enlargement of vacuole and they were observed to be breakdown.

  • PDF

On The Chemical, Botanical, and Chemotaxonomical Evaluation of The Genus Citrus -Part I : Polymethoxyflavones of The Leaf of Citrus deliciosa Ten.-

  • El-Domiaty, Maher M.;Abdel-Aal, Mahmoud M.;El-Shafae, Azza M.
    • Natural Product Sciences
    • /
    • v.2 no.2
    • /
    • pp.106-114
    • /
    • 1996
  • Four polymethoxyfavones were isolated from the leaves of Citrus deliciosa, three of which (nobiletin, 5-O-demethylnobiletin, and tangeritin) are bioactive. The fourth (7,4'-dihydroxy-5,6,8,3'-tetramethoxyflavone) is reported for the first time in the genus Citrus and is a potential chemotaxonomic marker. The structures of these flavones were confirmed by analysing their spectral data and comparison with similar compounds. The previously reported $^{13}C$ NMR assignment of 5-O-demethylnobiletin has been revised on the basis of 2D NMR experiments (HETCOR, COSY, and COLOC). The chemotaxonomic value of the present finding is verified.

  • PDF

Physical Changes in Satsuma Mandarin Leaf after Infection of Elsinoë fawcettii Causing Citrus Scab Disease

  • Paudyal, Dilli Prasad;Hyun, Jae-Wook
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • Citrus scab disease is one of the destructive diseases that reduce the value of fruit for the fresh market. We analyzed the process of symptom development after infection with scab pathogen $Elsino{\ddot{e}}$ fawcettii in the susceptible satsuma mandarin leaves to observe the structural modification against pathogen. The cuticle and epidermal cells along with 3-5 layers of mesophyll tissue were degraded 1-2 days post inoculation. Surrounding peripheral cells of degraded tissues grew rapidly and then enveloped the necrotic area along with the growing conidia. Cross sections through the lesion revealed hyphal colonization in epidermis and mesophyll tissues. In response to the pathogen colonization, host cell walls were lignified, inner cells were rapidly compartmentalized and a semi-circular boundary was formed that separated the infected region from the non-infected region, and finally prevented the intercellular pathogen spread.

Development of Machine Learning Models Classifying Nitrogen Deficiency Based on Leaf Chemical Properties in Shiranuhi (Citrus unshiu × C. sinensis) (부지화 잎의 화학성분에 기반한 질소결핍 여부 구분 머신러닝 모델 개발)

  • Park, Won Pyo;Heo, Seong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.192-200
    • /
    • 2022
  • Nitrogen is the most essential macronutrient for the growth of fruit trees and is important factor determining the fruit yield. In order to produce high-quality fruits, it is necessary to supply the appropriate nitrogen fertilizer at the right time. For this, it is a prerequisite to accurately diagnose the nitrogen status of fruit trees. The fastest and most accurate way to determine the nitrogen deficiency of fruit trees is to measure the nitrogen concentration in leaves. However, it is not easy for citrus growers to measure nitrogen concentration through leaf analysis. In this study, several machine learning models were developed to classify the nitrogen deficiency based on the concentration measurement of mineral nutrients in the leaves of tangor Shiranuhi (Citrus unshiu × C. sinensis). The data analyzed from the leaves were increased to about 1,000 training dataset through the bootstrapping method and used to train the models. As a result of testing each model, gradient boosting model showed the best classification performance with an accuracy of 0.971.

Suppressive Effects of Bio-Sulfur on Citrus Scab (바이오 황을 이용한 감귤 더뎅이병 발병 억제 효과)

  • Oh, Myung-Hyup;Hyun, Jae-Wook;Park, Won-Pyo;Hyun, Hae-Nam
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.223-233
    • /
    • 2020
  • The aim of the present study was to investigate the suppressive effects of the bio-sulfur used by eco-friendly farms on the outbreak of citrus scab. To evaluate the inhibiting effect of bio-sulfur on citrus scab germ tube growth, the citrus scab pathogen Elsinoe fawcettiiwas cultured in PDB and agar media, and germ tube growth was observed after bio-sulfur treatment. At both 40 and 88 h after inoculation, germ tube formation was inhibited by 500-, 1000-, and 2000-fold diluted bio-sulfur, and at dilutions above 4000-fold, germ tube formation was observed, although growth was still inhibited, when compared to untreated cultures. Meanwhile, the occurrence of citrus scab on spring-flush leaves in the field was 40.3% in the untreated control and 5.3, 10.3, 12.3, 15.3, and 24.0% when treated with imibenconazole, 2-4 and 6-6 lime-Bordeaux mixtures, which are also used by eco-friendly farms, 500-fold diluted bio-sulfur, lime sulfur, and 1000-fold diluted bio-sulfur, respectively. The occurrence of citrus scab on citrus fruit was 79.3% in the untreated control and 4.0, 33.8, 42.0, 43.3, 44.8, and 78.0% when treated with imibenconazole, 2-4 lime-Bordeaux mixture, 6-6 lime-Bordeaux mixture, 500-fold diluted bio-sulfur, lime sulfur, and 1000-fold diluted bio-sulfur, respectively. Because citrus scab can infect citrus leaves as early as May, as the spring flush begins, preventative control should be implemented by mid- to late-April, thereby increase disease control and reducing both labor and farming costs.

Effects of Petroleum Spray Oil on Photosynthesis Characteristics in Citrus Leaves (Petroleum Spray Oil 살포가 감귤 잎의 광합성관련 특성에 미치는 영향)

  • Kang, Si-Yong;Kim, Pan-Gi;Park, Jin-Hee;Riu, Key-Zung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.186-191
    • /
    • 2001
  • Recently, petroleum spray oil(PSO) has been used to control key pests in integrated pest management (IPM) of citrus and other orchards in Australia and USA. In order to clarify the influences of a newly developed PSO (D-C Tron $Plus^{(R)}$) on citrus leaves, 0.33% or 1.0% of PSO were sprayed to potted 4-year-old citrus trees under some kinds of condition, and then the changes of photosynthesis, transpiration, stomatal conductance and chlorophyll fluorescence(Fv/Fm) were determined. When sprayed with 1.0% PSO, the photosynthetic rate, transpiration and stomatal conductance of citrus leaves were decreased by 20%, and then recovered in 20 days after treatment (DAT), while there were little influences by the spray of 0.33% PSO. The value of Fv/Fm decreased more under the $34/24^{\circ}C$ temperature condition than that of under the $30/20^{\circ}C$ and $28/16^{\circ}C$ condition. The high temperature ($50^{\circ}C$ for 10 hours)-treated trees sprayed with PSO 1.0% or PSO 1.0% plus dithianon 1/2000 dilution showed not only the increase of rate in dropped leaf but also the reduced photosynthesis and Fv/Fm compared with $30/20^{\circ}C$ temperature-treated ones. From the results of this study, the spray of 1.0% PSO can inhibit the physiological activities in citrus leaf, particularly under high temperature condition after spray or the mixing-spray with a fungicide (dithianon WP, 75%).

  • PDF

Anti-inflammatory Effect of Dangyuja (Citrus grandis Osbeck) Leaves in LPS-stimulated RAW 264.7 Cells

  • Yang, Eun-Jin;Lee, Hye-Ja;Kang, Gyeoung-Jin;Park, Sun-Soon;Yoon, Weon-Jong;Kang, Hee-Kyoung;Cho, So-Mi Kim;Yoo, Eun-Sook
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1063-1070
    • /
    • 2009
  • Dangyuja (Citrus grandis Osbeck) is a native plant growing only on Jeju Island in Korea. In this study, antiinflammatory effect of dangyuja leaves on a murine macrophage cell line was investigated. RAW 264.7 murine macrophage cells were stimulated with lipopolysaccharide (LPS, $1{\mu}g/mL$) to induce expression of pro-inflammatory markers [interleukin (IL)-6 and inducible nitric oxide synthase (iNOS)]. The crude extract (80% MeOH Ex.) and solvent fractions (hexane, $CHCl_3$, EtOAc, BuOH, and $H_2O$ Ex.) were obtained from dangyuja leaves. The $CHCl_3$ fraction inhibited the nitric oxide (NO) and IL-6 production in a dose-dependent manner. Also, the $CHCl_3$ fraction inhibited mRNA expression and protein levels of iNOS in a dose-dependent manner. Furthermore, the $CHCl_3$ fraction inhibited LPS-induced nuclear factor (NF)-${\kappa}B$ activation and phosphorylation of mitogen-activated protein kinases (MAPKs: ERK, JNK, and p38). These results suggest that dangyuja leaves may inhibit LPS-induced production of inflammatory markers by blocking NF-${\kappa}B$ and MAPKs signaling in RAW 264.7 cells.

Suppression of Citrus Melanose on the Leaves Treated with Rhizobacterial Strains after Inoculation with Diaporthe citri (식물근권세균 처리에 의한 감귤 검은점무늬병에 대한 방제 효과)

  • Ko, Yun Jung;Kang, So Young;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.331-337
    • /
    • 2012
  • Citrus melanose is one of important disease in citrus cultivation, reducing quality of citrus fruits and resulting in economic loss. Like other diseases in citrus, melanose was mainly protected by chemical fungicide in the field. Recently, alternative method of disease control is highly required due to the side effect of the chemicals. In this study four rhizobacterial strains TRH423-3, MRL408-3, THJ609-3, and TRH415-2 are selected by dual-culture testing its antifungal activity against Diaporthe citri causing citrus melanose. To investigate the protection efficacy of the selected rhizobacterial strains to citrus melanose, the bacteria were pre-treated on citrus leaves following inoculation with melanose pathogen. Pre-treatment with all selected rhizobacterial strains showed disease suppression in which the levels of protection rates were different by the rhizobacterial strains. Additional treatment with the rhizobacterial strains after the pathogen inoculation enhanced protection rates in all cases. The strain MRL408-3 and TRH423-3 were identified as Burkholderia gladioli, TRH415-2 as Pseudomons fluorescens and THJ609-3 as Pseudomonas pudia as a result of analyzing the internal transcript spaces of the rhizobacterial strains rDNA. The selected rhizobacterial strains may be valuable as biological control agents in the environment-friendly citrus farm in which chemical application is limited.

Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker

  • Choi, Jeahyuk;Park, Euiho;Lee, Se-Weon;Hyun, Jae-Wook;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of $100{\mu}g/ml$ suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of $10{\mu}g/ml$. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides.